AD-A148 452 ANNOTATION LANGUAGE DESIGN FOR ADA (ANNA)(U) STANFORD
UNIV CA COMPUTER SYSTEMS LAB D C LUCKHAM JAN 84
RRDC-TR-83-298 F308602-86-C-0022

UNCLRSSIFIED F/G 972

EE |

o
FEEFEREE
EEEE

(4
13
113
]
o

=
(o]

A
o

ez e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU-OF STANDARDS-1963-A

KR “ PRI ry
\\W} "'.\i;":
Y - l,x_s‘_s_,-. A :

1.\ \\)
‘\.\\ '» ™ $

RADC-TR-83-298
Interim Report
January 1984

oo ANNOTATION LANGUAGE DESIGN FOR
v ADA (ANNA)

)

Stanford University

AD A1404

ez Dr. David C. Luckham

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441

84 04 23 009

DTIC

ELECTE
APR 25 1084 F

D

...........

.................
...........

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-83-298 has been reviewed and 1is approved for publication.

APPROVED: é 7, /M/:W

RICHARD M. EVANS
Project Engineer

e Gyt £

RAYMOND P. URTZ, JR.
Acting Technical Director !
Command and Control Division |

o coms oo O T

JOHN A. RITZ
Acting Chief, Plans Cifice

If your address has changed or if you wish to be removed from the RADC .
mailing list, or if the addressee is no lomger employed by your organization,

please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

v e AR St LU SN DAL S S e /A A A A St A A A S N AT AT AL A g f.;r_..r._tf.‘r.-l
~

{ r

2 UNCLASSIFIED

::' SECURITY CLASSIFICATION OF THIS PAGE 'When Dets. Entered)

e REPORT DOCUMENTATION PAGE BEFORE COMPLELING EORM
- m 2. GOVY ACCESSION NO.| 3. RECPIENT'S CATALOG NUMBER
{ RADC-TR-83-298 Ay Qs

X 4. TITLE ‘and Subtitie; i S. TYRE OF REPORT & PERIOD COVERED
N Interim Report

\ ANNOTATION LANGUAGE DESIGN FOR ADA (ANNA) Oct 1980 - Sep 1981

-’ . 6. PERFORMING OG. REPOAT NUMBER

= T AGTHORTS) T CONTHACT OF GRANT WUMBERZTT |
s Dr. David C. Luckham

) F30602-80-C-0022

_le ’St?t:gg;”dm?]g;%:?sfzo; NANE AND ACONESS 10. ::gﬁ‘A:ctnLKE:SrTT."PUR"O.J_E.C;, TASK
> Computer Systems Laboratory 62702F

. Stanford CA 94305 55811907

. '.: 1. CONTROLLING OFFICE NAME AND ADDRESS t2. REPORT QATE
h - Rome Air Development Center (COES) January 1984

Griffiss AFB NY 13441 13. NUMBER OF PAGES

..’,‘-'. _ 66

:::~ "Te., MONITORING AGENCY NAME & ADDRESS/II dilferent from Controlling Office) | 'S. SECURITY CLASS. af this report’
-4 Same UNCLASSIFIED

- e CECCASITICATION DOWNGRAGING
:j::-' JT& ASTRIBUTION STATEMENT (ol this Repare;
‘:' Approved for public release; distribution unlimited
{

-"4

:::: 17. OISTRIBUTION STATEMENT (of the sbatract entered in 8lock 20, it different from Report)

\. Same

,:::: 8. SUPPLEMENTARY NOTES

.._\

-2 RADC Project Engineer: Richard M. Evans (COES)

R |

.

o 19. KEY WORDS (Continue on reverse side if necessary and identity by dleck number)
A~ Ada Programming Language Formal Annotation Language
-.j: Ada Programming Support Environment Program Documentation
.- Assertions Program Verification

Error Detection Proof of Correctness

Sy First Order Logic Specification Language
. 20. AIST'lAc‘I’ (Continue an reverse side (f necossary and identify by bleek number)

:'.:- This interim report covers research work on Annotation language design for
=« Ada undertaken during October 1980 - September 1981. The major goal of

:.: this research is the design and development of programming tools that may
- be incorporated into an Ada Programming Support Environment during the

a mid-1980 time frame. Since Ada is a very advanced language containing

._ many essential new features such as tasking, and standard Ada tools such
i: as compilers do not yet exist, our research has been structured so as to

>

::: DD | [ax'3s 1473 eoimion oF 1 nov e8 13 cesoLeTE UNCLASSIFIED

:.': SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
J‘. ——

’
S ‘: [N
[}

F
.

- -

~ e e e e e T L. . CURE S LR PN
..... e I T R L IO IR S I A
..... <. . et .

S . . . RN . . - e
RO PO T LT A AR . -, . L e N T N LN
» P S I N A A N S A A TP A RO A AR LR AR Y WL PR L, AN A,

" *e

o
d
>
P, Lo
T UNCLASSIFIED
i ¢ p SECURITY CwAINFICATION OF THIS PAGE wWhen Dete Enteres)
:&t; : approach the major goal Ef first studying the error detection problem for
Naths subsets of Ada corresponding to already highly used languages such as
W Pascal. The error detection problem is an important starting point
. because this attempts to analyze programs for common errors without
;:;: assuming that the programs have accompanying annotations. At the start
fajx - of this project no formal annotation language for Ada existed. This phase
L:ﬁ: of our research effort was to design an annotation language for Ada, called
;u:u ANNA. This would provide a basis for verification of Ada programs in
P general. The report gives a preliminary manual for ANNA.
‘2& Comments provide a natural and universally accepted method of describing
e the intended behavior of a program. In this report we propose a language,
_}\T ANNA, which extends Ada by providing a formal comment facility. In ANNA
o) formal comments are written with the same precision as programs, and
e included as an extension of Ada programs. Formal comments are either
. virtual Ada text or annotations. Since annotations have a well defined
¢ﬁ2 syntactical structure in ANNotated Ada, they can be processed by tools
}:ﬂ such as verifiers, optimizers, documentation systems and support tools
[for program development.
ES% In making this proposal, we have had four principal considerations.
Adi
';sﬁ 1. Constructing annotations should be easy for the Ada programmer,
'3ﬁa , and should depend as much as possible on notation and concepts
- of Ada.
:’:i 2, ANNA should possess language features that are widely used in
Lo the specification and documentation of programs.
i 3. Anna should provide a formal framework within which different
}}}: theories of specifying programs may be applied to Ada.
N 4. Annotations should be equally well suited for different possible
}:.: applications, not only for formal verification but also for
$g§\ specification of program parts during program design and development]
-~ The ANNA design requirements place heavy emphasis on developing the ways in
'g: which Anna can be used for specification and how it may be extended in the
}& future. As a consequence of the choice of a first order annotation
%ﬁ: language, different theories and techniques of specifying programs may be
'3?. applied using ANNA. For example, previous work on assertional specifica-
L2ty tion of Pascal programs may be formulated in ANNA since any programming
concept may be defined by the first order axiomatic method (axioms are
simply stated as annotations) and used in annotations. It is also clear
that the algebraic method of specifying abstract data types may be applied
to packages in ANNA,
L ANNA is incomplete, and may require future extensions. First, some
i possibly useful specification concepts are not provided. Consider for
Nadd instance modal operators. These have to be defined axiomatically at the
;:ﬁi moment, but it may be useful to include them among the basic predefined
JJ operators in later versions. Secondly, ANNA does not include tasking.
§}$ An extension to include task annotations may require the introduction of
X new predefined attributes, for example task type collections, and the
.FM semantics of task annotations will have to be defined.
U
NN ‘ UNCLASSIFIED
\:.\; ' SECURITY CLASSIFICATION OF Tv* RAGE When Dora &rce:
N
4%
e

N e

.

TR I TSI) P o i e AT (o JRRIPRPRIL ‘I '.~.’.._'.._‘.-_ - .'_'..“.._ et s .-.u._'. R . .
o 3%, AR AW - _ mm. L {}:\ .‘l’.'r‘.‘:‘.‘t‘.\i'} IR W, S R T, S PR *

SRR ol |t 12

A a .
- A LR

'4
\ ABSTRACT
This interim report covers research work on Annotation language design

for ADA undertaken dufing October 1980 - September 1981. > The major

goal of this research f;f%he design and development of programming tools
that may be incorporated into an Ada Programming Support Environment
during the mid-1380's time frame. Since Ada is a very advanced language
containing many essential new features such as tasking, and standard Ada
tools such as compilers do not_yet-exist,‘ﬁag research has been structured
so as to approach the major goal by first studying the error detection
problem for subsets of Ada corresponding to already highly used
languages such as Pascal. The error detection prob]emLﬁgcan important
starting point because this attempts to analyse programs for common
errors without assuming that the programs have accompanying annotations.
At the start of this project no formal annotation language for Ada
existed. The second phase of 33f’research effort was to design an

annotation language for Ada, called ANNA. This would provide a basis

for verification of Ada programs in general.

Work on error detection and the RUNCHECK verifier is covered in the
first Interim report for October 1979 - September 1980. This second

. A
report deals with o8r work on the design of ANNA;\

[
Comments provide a natural and universally accepted method of describing

the intended behaviour of a program. .In this report we propose a
language, Anna, which extends Ada by providing a formal comment facility.
In Anna formal comments are written with the same precision as programs,
and included as an extension of Ada programs. Formal comments are

efther virtual Ada text or annotations. Since annotations have a well-

defined syntactical structure in ANNotated Ada, they can be processed
by tools such as verifiers, optimizers, documentation systems and support

tools for program development.

In making this proposal, we have had four principal considerations.

1. Constructing annotations should be easy for the Ada programmer,
and Should depend as much as possible on notation and concepts
of Ada. .

2. Anna should possess language features that are widely used in
the specification and documentation of programs.

3. Anna should provide a formal framework within which different
theories of specifying programs may be applied to Ada.

4. Annotations should be equally well suited for different possible
applications, not only for formal verificationbut also for
specification of program parts during program design and

development.

The Anna design requirements place heavy emphasis on developing the ways
in which Anna can be used for specification and how it may be extended
in the future. As a consequence of the choice of a first order annota-
tion language, different theories and techniques of specifying programs
may be applied using Anna. For example, previous work on assertional
;peciffcation of Pascal programs [Hoare 69, Hoare and Wirth 73, SVG 79,
Luckham 79] may be formulated in Anna since any programming concept may
be defined by the first order axiomatic method (axioms are simply

stated as annotations) and used in annotations. It is also clear that

the algebraic method of specifying abstract data types may be applied to

packages in Anna.

Anna is incomplete, and may requife future extensions. First, some

possibly useful specification concepts are not provided. Consider

for instance modal operators. These have to be defined axiomatically

at the moment, but it may be useful to include them among the basic
predefined operators in later versions. Secondly, Anna does not include
tasking. Anextension to include task annotations may require the
introduction of new predefined attributes, for example task type collections,

and the semantics of task annotations will have to be defined.

Concurrently with design work on Anna, further work on error detection
has continued. This work has been concerned mainly with liveness errors
in tasking; 'Sinée specifications for tasks are temporarily omitted from
ANNA, this aspect of error detection was given special priority. This
work is currently in progress, as is the Anna design, and will be

covered in our final report.

The report gives a preliminary manual for ANNA. Currently, a guide
on the use of ANNA in specifying and annotating Ada program is being

written.

Acoession Ior
NTIS GRAXI P
|

DTIC TAB
Unannounced |
Justification __ !

By.

Distribution/

[=== o
Availability Codes

Avail end/or

Dist Special
L)

B

N {
{

.-;“

iii

s

TR R LA RO R TR TR AR R CE DR LA -._-\'&
AN R, d'.f:fkf:f- ORI 3) -'} N -.'.‘-\\f.\ LN }:. \'.\fr LA AL

: : Table of Contents
N
S Table of Contents
e
E"f 1. INTRODUCTION 1
) 1.1 ADAPTION TO ADA 1
' (;: 1.2 CONVENTIONAL SPECIFICATION TECHNIQUES 1
N * 1.3 FUTURE SPECIFICATION TECHNIQUES 2
T 1.4 SPECIFICATION DURING PROGRAM DEVELOPMENT 2
N 1.5 STRUCTURE OF THE REPORT 3
o 2. LEXICAL ELEMENTS 4
2 2.1 CHARACTER SET 4
o . 2.2 LEXICAL UNITS AND SPACING CONVENTIONS 4
i 23.2.6 No additions. 4
» 2.7 FORMAL COMMENTS 4
. 2.7.1 VIRTUAL ADA TEXT 4
2.7.2 ANNOTATIONS 8
03 2.7.3 POSITION OF FORMAL COMMENTS 6
! 28 ~ No addition. 6
e 2.9 RESERVED WORDS 6
¥ 2.10 TRANSLITERATION 8
",,\‘- 3. DECLARATIVE ANNOTATIONS 8
'r};x 3.1 SYNTAX AND SCOPE OF DECLARATIVE ANNOTATIONS 8
N 3.2 ANNOTATIONS ON OBJECT DECLARATIONS 9
o 3.3 ANNOTATIONS ON TYPE AND SUBTYPE DECLARATIONS 10
B 3.4 No addition. 12
N 3.5 No addition. 13
br o 3.6 ANNOTATIONS ON ARRAY TYPES 13
4 3.6.1-3.6.3 No'addition. . 13
2 3.6.4 ARRAY OPERATION SEQUENCES 13
3.7 ANNOTATIONS ON RECORD TYPES 14
o 3.7.1-3.7.3 No addition. 14
i 3.7.4 RECORD OPERATION SEQUENCES . 14
’ ﬁ 3.8 ANNOTATIONS ON ACCESS TYPES , 15
F 3.8.1 ACCESS TYPE ATTRIBUTES ' 15
v, 3.8.2 COLLECTION OPERATION SEQUENCES 16 -
% 4. NAMES AND EXPRESSIONS IN ANNOTATIONS . 18
N 4.1 NAMES IN ANNOTATIONS 18
'~§ 4.1.1-4.1.2 No addition. 18
Lt 4.1.3 SELECTED COMPONENTS FOR RESULT VALUES 18
4.1.4 ATTRIBUTES 18
43.43 No addition. 18
‘,n: 4.4 EXTENDED EXPRESSIONS IN ANNOTATIONS 18
3¢9 4.5 OPERATORS AND EXPRESSION EVALUATION 19
35 4.5.1 LOGICAL OPERATORS _ 19
j\' py 4.5.2 RELATIONAL OPERATORS ' 20
g 4.6-4.10 No addition. ' 20
4.11 QUANTIFIED EXPRESSIONS 20
o
\

Table of Con}ents

4.12 IN VALUES AND OUT VALUES
4.13 DEFINEDNESS OF ANNOTATIONS

5. STATEMENT ANNOTATIONS
6. SUBPROGRAM ANNOTATIONS

6.1 ANNOTATIONS ON SUBPROGRAM DECLARATIONS
'8.2 FORMAL PARAMETER ANNOTATIONS
6.3 ANNOTATIONS ON SUBPROGRAM BODIES
6.4 ANNOTATIONS ON SUBPROGRAM CALLS
6.4.1 THE 'OUT ATTRIBUTE. .
6.5 RESULT ANNOTATIONS FOR FUNCTION SUBPROGRAMS
6.6 EXAMPLES.

7. PACKAGE ANNOTATIONS

7.1 PACKAGE STRUCTURE
7.2 VISIBLE ANNOTATIONS IN PACKAGE SPECIFICATIONS
7.2.1 PACKAGE AXIOMS
7.3 HIDDEN ANNOTATIONS IN PACKAGE BODIES
7.4 ANNOTATIONS ON PRIVATE TYPES
75-7.6 No addition.
7.7 PACKAGE STATES
7.7.1 STATE TYPES
7.7.2 CURRENT AND INITIAL STATES
7.7.3 STATE COMPONENTS
7.7.4 OPERATION SEQUENCES
7.7.5 STATE RELATIVE RESULT VALUES
7.8 EXAMPLES OF PACKAGES WITH ANNOTATIONS

‘8. VISIBILITY RULES IN ANNOTATIONS

8.1 No addition.
8.2 SCOPE OF A DECLARATIVE ANNOTATION
8.3 VISIBILITY

9. TASK ANNOTATIONS
10. PROGRAM STRUCTURE
11. EXCEPTION ANNOTATIONS

11.2 ANNOTATION OF EXCEPTION HANDLERS
11.3 PROPAGATION ANNOTATIONS

12. ANNOTATION OF GENERIC UNITS

12.1.1 ANNOTATION OF GENERIC PARAMETERS
PREDEFINED Anna ATTRIBUTES
REFERENCES

588 JRR2BBBLLYLRRE R 88BBREYIR o ¥ BY

O & b
O 0 ®

88

N O (4]
2 08N

ARSI |

s, .
R
v INTRODUCTION 1 !
IR
i_\g 1. INTRODUCTION
':..:‘::
C A0
y Comments provide a natural and universally accepted method of describing the intended behaviour
* Y of a program. In this paper we propose a language, Anna, which extends Ada by providing a formal
:ﬁa comment facility. In Anna formal comments are written with the same precision as programs, and
Y included as an extension of Ada programs. Formal comments are either virtual Ada text or
N annotations. '
N
. Since annotations have a well-defined syntactical structure in ANNotated Ada, they can be processed i
nh by tools such as verifiers, optimizers, documentation systems and support tools for program
R development.
e In making this proposal, we have had four principal considerations.
_, 1. Constructing annotations should be easy for the Ada programmer, and should depend as
o much as possible on notation and concepts of Ada.
' %
<y
: »*«j_ 2. Anna should possess language features that are widely used in the specification and
3¢ documentation of programs.
A\ Aw
f:-". 3. Anna should provide a formal framework within which different theories of specifying
I programs may be applied to Ada.
1o
"ij; 4. Annotations shouid be equally well suited for different possible applications, not only for
‘ formal verification but also for specification of program parts during program design and
Y deveiopment.
3
Y
,;{j 1.1 ADAPTION TO ADA
‘ , Goal (1) has had a major influence on both the syntax and semantics of Anna. The Anna syntax
Y closely resembles that of Ada. Formal comments occur within the Ada comment frame work. Anna
:'5‘:: programs are therefore acceptable by Ada translators. Concepts in Anna are extensions of those in
:i\ Ada. For example Bootean expressions are extended to allow quantification. Collections of access
types are available in annotations using the attribute notation of Ada. The central specification
. concept in Anna, the declarative annotation, is a generalization of the constraint concept in Ada.
l"‘:::
e .'.* .
AN 1.2 CONVENTIONAL SPECIFICATION TECHNIQUES
2D .
e
: Goal (2) requires that the basic annotation language is a first order logic extending Ada Boolean
(%, expressions with quantifiers and implication operators. This choice is clearly dictated by the
x| fact that most comments (informal or formal) are Boolean relationships between program variables.
:-j The inclusion of Ada text as formal comments - called virtual Ada text - now gives us a powerful
Iy ': comment facility without affecting the execution behavior of the underlying Ada program. For
"> example specifications containing efements of a computation that are not manipulated by the
-2 program, e.g., history sequences of values of a variable, may be expressed in Anna by using both
f‘:}' virtual Ada text and annotations.
o
)
Ny
).p
. "-

et e e T T T RS \..~J% +

LI Wl . = M “u Ny - “» -
RN e TR AR s o]

Introduction

However, this facility is not quite powerful enough. For example, the most successful method of
specifying access variable manipulations requires that annotations may refer to objects that are not
available in the programming language at all, i.e., Collections [Luckham and Suzuki 79]. (see also
section 6.3.2. [Ichbiah et al. 79b].) Therefore access type collections and standard operations on
them are added to Anna as predefined attributes; they may appear only in annotations. Similarly the
concepts of state and sequence of state transitions are fundamental in the specification of packages,
$0 Anna provides the basic sequence building operations in a notation adapted to Ada (see also
[Luckham and Polak 80b]). ‘

To allow the correctness proof of programs raising exceptions (see for example [Bron et al. 77]),
propagation annotations are included in a notation adapted to Ada from [Luckham and Polak 80a].

1.3 FUTURE SPECIFICATION TECHNIQUES

Goal (3) is concerned with developing the ways in which Anna can be used for specification and how
it may be extended in the future. As a consequence of the choice of a first order annotation
language, different theories and techniques of specifying programs may be applied using Anna. For
example, previous work on assertional specification of Pascal programs [Hoare 69, Hoare and Wirth
73, SVG 79, Luckham 79] may be formuilated in Anna since any programming concept may be defined
by the first order axiomatic method (axioms are simply stated as annotations) and used in
annotations. It is also clear that the algebraic method of specifying abstract data types may be
applied to packages in Anna.

Anna is incomplete, and may require future extensions. First, some possibly useful specification
concepts are not provided. Consider for instance modal operators. These have to be defined
axiomatically at the moment, but it may be useful to include them among the basic predefined
operators in later versions. Secondly, Anna does not include tasking. An extension to include task
annotations may require ‘the introduction of new predefined attributes, for example task type
collections, and the semantics of task annotations wiil have to be defined.

1.4 SPECIFICATION DURING PROGRAM DEVELOPMENT

Goal (4) expresses our concern for a wide applicability of the language. Use of Anna should not be
restricted to only verification of existing programs in the conventional sense. Anna is also suitable for
the formal specification of subprograms and packages during program development at a stage where
respective bodies are not yet available. Such specifications may be used to simulate interfaces at the
development stage. They will provide the basis for a proof of correct use of a subprogram or package
independent of and prior to implementation, as well as a proof of correct implementation, (i.e.,
consistency of the body with the specifications). A specification will accompany a program through
all stages of its development, for instance by successive transformation (see [Bauer et al. 78]), and
may even be generated as part of the development process (see [Broy and Krieg-Bruckner 80}).

.\..i

Y
Bk

= ".-_'--_'n
Nt

l_{v.
"4
4 -

LY
P

NSO AARR
SR

...
PSP R) P T T e S A N T N R I
......................

4y

NN
Y W)

%
>,
.f‘

A A 4 A

A S T R S T

Introduction 3

1.5 STRUCTURE OF THE REPORT

This Report is structured in the same way as the Ada Reference Manual [ARM, Ichbiah et al.80; see
also 79a,b]. It should be read as an extension to that document, informally describing the lexical
elements, syntax and semantics of Anna. '

The syntax of Anna is an extension of the syntax of Ada; the syntax rules denote extensions or
replacements of rules in Ada with the same name. An Anna rule is often an Ada rule with additional
clauses; in this case three dots enclose references to the corresponding Ada rules. It is understood
that appropriate substitutions are performed. Consider for exampie

expression ::=
. . . adaexpression . . .
quantifier domain {; domain } => boolean_expression

In this Anna syntax rule, the right hand side of the Ada syntax rule for expressions should be
considered to be substituted at the position of . . . ada_expression ... Now "boolean_expression" with
the italic identifier, boolean, refers to the Anna syntax rule; any occurence of expression has the
extended meaning of Anna. Note, however, that the Anna syntax only applies to annotations and not
to the underlying Ada program.

The separation of virtual Ada text and annotations in Anna from the underlying Ada program by
comment prefixes is not represented in the syntax of Anna, but is nevertheless lexically enforced to
make every legal Anna program a legal Ada program.

L2l
®

RS LK

) wiy W - R G G I L o T B et et A" Ve R
Tty I N A N A R e e M e

'\...Q
X .
M 4 LEXICAL ELEMENTS
)
g d
oo 2. LEXICAL ELEMENTS
57
-
! The lexical elements and conventions of Anna are those of Ada, with the extensions described in this
< chapter.
:-_\'J
G
» 2.1 CHARACTER SET
oy The following additional characters may be used in an annotation: ’
1 (g) Additional special characters
."::: .
- - k| v L4 # S 2z
S |
. |
2.2 LEXICAL UNITS AND SPACING CONVENTIONS
The following compound symbols may be used in annotations: ;
Ei:‘: -> <=>
Yoo
'\..\'
23-2.6 No additions.
N :
f..v‘. |
J__J‘
P g
ad 2.7 FORMAL COMMENTS
”, 7 |
> 'd
Anna permits two kinds of formal comments, virtual Ada text and annotations.
3
, ‘_:: 2.7.1 VIRTUAL ADA TEXT
e .
A comment starting with a double hyphen followed by a colon is called a virtual Ada text and may be
- referred to only in formal comments. A virtual Ada text is regarded as a comment in an Ada program.
.:-_'.: In an Anna program, however, it is considered to be part of the program text and must satisfy the
"I;'_\ lexical, syntactic and semantic rules of Ada with one exception: bodies of virtual subprograms and |
.~ packages need not be supplied. |
‘...'n
Ly
rou Example of a virtual variable and a virtual function: ‘
e --: GHOSTX : INTEGER;
s?_‘- --: function LENGTH return INTEGER range 0 .. SIZE;
o -= Ghostx and Length may only be referred to in formal comments
% -
Inle
L)Y
)
4.5
* ':

}A 1

............

‘ ;.in.t".n..fl.ﬂn. s ._l_\ A.:’]-’ .."

i e .t .._.
» “.-'I.:" [y ‘j

R

]
AN

R

A LY
.-" ’A—’LL_“

-

.

i
A

[g

Pl

L)
o ate,
YN

‘PAI

n
-

Lexical Elements 5

2.7.2 ANNOTATIONS

A comment starting with a double hyphen followed by a vertical bar (or exclamation mark) is called an
annotation. In an Anna program, such an annotation must satisfy the lexical, syntactic and semantic
rules of Anna.

An annotation is a quantified Boolean expression -- a Boolean expression that may contain
quantifiers (section 4.11). A variable that is quantified is called a /ogical variable; its scope of visibility
is the scope of the quantifier in the annotation. A variable that is not quantified is said to be a free
variable of the annotation. A free variable must be a program variable -- i.e. a variable declared in
the Anna text in which the annotation appears, and to which the normal Ada scope ruies apply.
Program variables may be either arguments or parameters of an annotation, depending on context.
Parameters are evaluated when the annotation is elaborated.

Annotations may be generic and are instantiated according to the Ada rules.

Every annotation has a scope of application that is a region of program text for which it has a
meaning. The scope of an annotation is determined according to the Ada scope rules from its
position in the text. ‘

The syntax and informal semantics of annotations in Anna are described in Chapters 3 - 12 of this
document.

Examples of annotatlohs:

subtype EVEN is INTEGER;
-=| where forall X:EVEN => X mod 2 = Q;
-= all values of subtype EVEN must be divisible by 2.
-= Xis a logical variable.
== Note that this annotation cannot be expressed as an Ada constraint.

MAX : INTEGER;

--] 0 < MAX < 100;

== MAX is a program variable argument of the annotation (section 3.2).
-= the values of MAX must satisfy the annotation throughout its scope.

type FUNNY is array (1..MAX) of INTEGER;:

== | where for all A : FUNNY; I: INTEGER range 1..MAX =
Imod 2 23 — A(I) < MAX;

-- MAX is a program variable in the annotation. Since this is a type constraint

(section 3.3) MAX is a parameter of the annotation. All occurrences of MAX

-= in the annotation are elaborated in the same way as in the type declaration.

The values of FUNNY are then constrained to satisfy the elaborated annotation.

function IS_EVEN (Y:INTEGER) return BOOLEAN;
-=| return Y in EVEN;
' =~ the values returned by IS EVEN must satisfy the constraint on the subtype, EVEN.
== Yis aprogram variable argument of the annotation.

function IS_PRIME (P:NATURAL) return BOOLEAN;
=-=| return not exist X,Y:NATURAL =>
-=] (X>1and Y > 1) X *Y =P

- .
el e

oo .q‘\-ﬂ OACARA i
L NI A RS SRR

.....
«tet

e et T e
PRI RIS PR R

Lexical Elements

-- XandY are logical variables in the return annotation defining primeness
== which constrains the values returned by IS PRIME. P is a program variable
~-= argument and is evaluated at each call.

2.7.3 POSITION OF FORMAL COMMENTS

The legal position of formal comments is restricted by the syntax of Anna. Formal comments may not
appear in an Anna program everywhere an Ada comment may appear. For example, virtual Ada text
may appear only where it would be legal in Ada if the comment delimiters preceding it were removed.
Similarly, a declarative annotation may only appear in an Ada declarative part; a statement annotation
only in a statement position. '

The syntactic description of Anna omits -=: and --| , it being understood that each line of an Anna

formal comment must start with one of these prefixes. Thus a formal comment that runs over several
lines must start with a new comment prefix on each continuation line.

Example of an annotation extending over more than one line:

procedure PUSH (E : in Elem);
-=| raise OVERFLOW => STACK.LENGTH() = SIZE
- and [STACK;PUSH(E)] = STACK;

2.8 No addition.

2.9 RESERVED WORDS

The following additional words are reserved in annotations:

exist that requires where -axiom

L)
n.'dy

2.10 TRANSLITERATION

.‘. »
’a

LI)
V8.,

-

2"a

The following additional replacements are always allowed for characters that may not be available:

&

L

LTS KN

Ay e ry

M

v

4

VA< ¢ 3§ <>)=

Lexical Elements 7

not
and
or

->
<=>
oxist
for all

LN

r KT A I L TN I ST .
Aliaiaded Lo ":q.ﬁ.fs.{m':.’_\-‘_ﬁ'.'w“.\ .'4i" '.','i\::\,h.. A A J

‘:: X |
O]
03 8 DECLARATIVE ANNOTATIONS ;
Lo
N 3. DECLARATIVE ANNOTATIONS
b .

(- Declarative annotations in Anna are annotations placed in a declarative part. They extend the Ada

:-Z-f:}-; concept of type constraint to other forms of declarations. However, more general Boolean
~.$ expressions are permitted in declarative annotations than Ada constraints.
it
f:.'-;-‘.'— Declarative annotations -are constraints over their scope of visibility with one exception. The Anna

package axiom declaration, permits annotations that are axiomatic to be associated with 3
o declarations of packages. Axioms are guaranteed to be satisified by all entities declared in the visible ‘

N part of the package.

“.‘:."u .

LT 1
‘{':-‘:. In this chapter we deal with annotations on object, type and subtype declarations. Declarative :

N annotations on subprograms are described in chapter 6, and on packages in chapter 7.

:'.f{: |
;;5:':,- 3.1 SYNTAX AND SCOPE OF DECLARATIVE ANNOTATIGNS :

o
-7 declaration :: = ... ada_declaration . .. |
s 4 | declarative_ annotation; _ i

L
P2 :.. 1
R declarative annotation :: = boolean expression | ;

2t type constraint | f

. subprogram _constraint | |
. axiomatic_annotation
NN type_constraint :: = where quantified_ expression
soist subprogram _constraint :: = where bool/ean_ expression
t z axiomatic_annotation :: = axiom quantified expression
t s.:

' The scope of a declarative annotation is the same as for a declaration at the same position. Thus a

0 declarative annotation in an enclosed scope only holds in that scope.

o,

\OAY . . . , .

'r.;::. : A declarative annotation in Anna that is not a package axiom is an Anna constraint. This is a

) generalization of the concept of a constraint in Ada. An Ada constraint can be expressed as an
— annotation: for example, :

e INDEX : INTEGER range O .. SIZE;

h .

! N is equivalent in Anna to

\"\.‘ ’

NS INDEX : INTEGER: --] 0 s INDEX s in SIZE;

& |

Paty: On the other hand, the generality of annotations permits the expression of a wider variety of |

:r_.n; programming concepts and design intentions, even non-constructive or undetermined ones. |
2N _

o .

N Example of an Anna constraint not expressible as an Ada type constraint:

‘.' subtype ODD_PRIME is INTEGER; |
‘ ,__ -=| wheraforall X : ODD_PRIME => O0DD(X) and PRIME(X); !

==0DD and PRIME are previously declared boolean valued functions.

RS L AL \J
UMV A Ay

.......... e Y VS A e e LTy T AT AaTR TR RN VL VA

X P Declarative Annotations ’9
, '_:: Example of an annotation whose truth is undetermined:
subtype FERMAT is INTEGER;
o --| whereforall F : FERMAT =)
\1 == exist X, Y, Z : NATURAL =>
o) -~ X ® F +Y % F xz e F;
5‘
! Declarative annotations are elaborated according to the Ada rules for elaboration of declarations with
some minor extensions:
P 1. Variables bound by quantifiers are not elaborated.
\.‘é :
::',‘ " 2. Program variables (i.e. unquantified variables) in type annotations and package axioms
. are treated as parameters of the constraint and are elaborated Program variables
appearing in any other kind of annotations (e.g., object constraints) are treated as the
names of constrained objects and therefore are not elaborated.
\
X 3. Variables with mode in are elaborated.

4. An expression containing a virtual function is not elaborated if a body is not supphed for
that function.

v i S

S. Elaboration of objects and type annotations takes place when elaboration of Ada text at
the same position would take place. Elaboration of annotations in a subprogram
specification takes place when that specification part is elaborated except that in mode

L expressions are not elaborated then (see section 6).

y,

zﬁ Notes:

s 1. An annotation may not be computable in general since it may be an arbitrarily quantified
boolean expression in Anna. Checking of the correctness of such annotations must rely

) on proof-theoretic methods.

:? 2. Parameters of an annotation may not be computed at elaboration if they depend on

:.j values of virtual functions. Instead their values will be deduced by proof methods from the

‘ annotations of the virtual functions.

0

]

' 3.2 ANNOTATIONS ON OBJECT DECLARATIONS

2,

< A declarative annotation on an object is a boolean expression appearing in a declarative part where
- the object is visible such that the object occurs as a free variable in the expression. The annotation
: constrains the values of the object throughout the scope of the annotation.

)
3 In general, for a declarative annotation on an object, X
‘

- X : T; -=] €(X);

i3
14
- '.. i

EM

«

NN

»
*

b S

Lt AR S RIS AN A 4t % . eV a e T T AN LAMEN

10 Declarative Annotations

any use of X is conceptually equivalent to a call CHECK(X), where

function CHECK(A : T) return T is
begin
it C(A) then
return A;
else
raise CONSTRAINT_ERROR;
end if;
end;

except that the predefined exception CONSTRAINT ERROR will not be raised.

Examples of object annotations:

LIMIT : INTEGER :=°'10_000;
-=| - 2**in N < LIMIT < 2**in N:
-~ where N is a visible variable at this point; any value of LIMIT must satisty
-=- the inequality bounds for the value of N when the constraint is elaborated.

generic
SIZE : INTEGER;
package DATA is :
BOUND : INTEGER; '--] 0 < BOUND < INTEGER'LAST mod SIZE;

end DATA;
== the constraint on BOUND is generic and is instantiated by the actual value of SIZE.
-= In any instantiation of DATA all values of BOUND must obey the actual constraint.

--: function F (X : INTEGER) return INTEGER;
--| returnthat Y => PRIME(Y) and 2**X < Y and _
--| ftorall T : INTEGER => PRIME(Z) and 2**X < Z = Y £ Z;

X : INTEGER; --] X < F(in X);

-=- the parameter F(in X) is not elaborated since F has no body; its value
-= must be inferred from the specifications for F.

If a declarative object annotation in Anna involves several program variables, none of which has the
mode in, then it must hold for all of these variables.

Example of a declarative annotation on two variables:
M, N : INTEGER := O; <] N < M;

-= the value of N is constrained to be /ess than or equal to the
-~ value of M throughout the scope of the declaratioq

3.3 ANNOTATIONS ON TYPE AND SUBTYPE DECLARATIONS

A declarative annotation may be used to constrain a type or subtype declaration. Such an annotation
must immediately follow the constrained declaration and is bound to that declaration by the reserved
word, where. Access types may not be constrained.

L
' ¥,

-
-~

Declarative Annotations 1

.
.
«u

.
4.'

A type (subtype) constraint is a quantified expression preceeded by where and a single universal

f.‘,: quantifier over that type or subtype. ' All other quantifiers in a type constraint must be over types that
have previous complete declarations.

After elaboration a type (subtype) constraint must be a closed annotation --i.e., all variables are
quantified. Any program variable in a type (subtype) constraint is treated as a parameter and is
::j elaborated. Thus all program variables in type constraints have the default in mode (section 4.12).

' Type constraints have the form, (see Section 4.11):

2 type_constraint ::= where quantifier identifier : subtype_indication =>
V\ § . Quantified_expression
'I;

R A type constraint is interpreted as restricting the domain of values of that type. Thus if we have,

o type T is T°';

g} where forall X:T => C(X);

E then the values of type T are constrained to be in t.e set, {X | X in T' and C(X)}. Such a constraint will

3 be consistent with the underlying program if, within its scope, the constraint is true of the values of all
objects declared of type T, all values of parameters of type T of procedure calls, and all vaiues of type
T returned by functions.

: .$ Examples of an Anna type constraints:
type DATE is

record

v DAY : INTEGER range 1 . . 31;

,.4 MONTH : MONTH_NAME;

N YEAR : INTEGER range 1 . . 4000;

; end record;

. -=] whereforall X : DATE => X.MONTH = "FEBRUARY" =+ X.DAY <= 29;

:(;e‘t
1 type MAT isarray (1 . . N, 1 . . N) of REAL;

Nl subtype DIAGONAL_MAT is MAT;)

) -=| whereforall M : DIAGONAL_MAT; I,J : NATURAL =>

: == not I = J -+ M(I,J) = 0.0 and

- == I =J -+ MI,J) s X

== Xis a global program variable and is elaborated as a parameter of the
-~ subtype annotation.

o —
2y LA AR

Notes
A
: 1. A type constraint also constrains the domain of values of the type in annotations.
o
f\'j 2. The leading where binds a type constraint to the preceding type (subtype) declaration
> and avoids ambiguity with constraints on global objects.
' 3. All free variables in a type constraint are treated as in parameters and are elaborated
'5; {section 4.12).
9 LY

o ol X \]
\" ‘l.‘ b | * ,, >, LY

&
"
9
N, :
7 12 : Declarative Annotations
T
N
Ig 4. Since the only operations on access values are allocation, assignment, and equality test,
«i:‘ the ability to constrain such values is trivial. So constraints on access types are not
! . permitted.
h :Z 8. A type constraint is equivalent to a set of declarative constraints placed within its scope
1N on objects and subprograms.
X
W Successive annotations on types and subtypes are equivalent to conjunctions of constraints and
therefore describe intersections of subsets of values of the type. A union of subsets can be obtained
. g.j} by disjunction of constraints in a type or subtype annotation.
k=
X Examples of successive subtype annotations:
\..':-. : .
e subtype NATURAL is INTEGER;
: --] where for all X:NATURAL => X 2> 1;
’ subtype EVEN is INTEGER;
4 --| where forail X:EVEN => X mod 2 = 0;
N subtype EVEN_NATURAL is NATURAL;
32 --] where forall X:EVEN_NATURAL => X mod 2 = 0;
HES subtype NATURAL_EVEN is INTEGER;
] --| where for all X:NATURAL_EVEN => X > 1 and X mod 2 = 0;
A -- Even Natural and Natural Even are equivalent :
b subtype ZERO_INTEGER is INTEGER;
oY --| where for all X:ZERO_INTEGER => X = 0;
b o subtype Positive_INTEGER is INTEGER;
R --| where for all X:POSITIVE_INTEGER =>
s -=-| X in ZERO_INTEGER or X in NATURAL;
) ',: Examples of type constraints with inner quantification:
LR%)

subtype GREATER_ONE is NATURAL;

3 --| where forall X : GREATER_ONE =>
P -=| exist Y : NATURAL => Y < X;

g -=-values of GREATER ONE are constrained to be greater than 1
Y
]
i

subtype SOME_INTEGER is INTEGER;
--] whereforall X : SOME_INTEGER =>

-= forall Y : INTEGER => X = Y;
i,':.f -- SOME INTEGER is empty -- i.e., no values of INTEGER satisty
4 -- the constraint.

o _
Reterences: quantified expression, quantifier 4.11.
By
. 3.4 No addition.

) :‘ .

&4

l.‘

2
A]

b;)
N
‘ b

R S ST, TR v
et A e TNt e

P 4 £ I

g

A oo B BV i e 3

[N

;. YN .a
j.;‘l._'lfl;

-
)

5

AR ML

AP
oo

R
AT

5 e

-
.

Declarative Annotations 13

3.5 No addition.

3.6 ANNOTATIONS ON ARRAY TYPES

A method of annotating programs containing array, record and pointer types in Pascal has been given
in [Luckham & Suzuki 79], This method is based upon the use in annotations of Collections of
accessed values and predefined functions on arrays, records and Collections. It is applicable to Ada.
Anna provides notational facilities to do this.

in Anna, new names (primary terms) are introduced that denote sequences of assignment operations
on arrays and records. For access types, Collections and the predefined operations on collections
are introduced as attributes of access types. Sequences of operations on collections are names
(primary terms) in Anna.

3.6.1-3.6.3 No addition.

3.6.4 ARRAY OPERATION SEQUENCES

For every array type T the following ncw names (primary terms) of type T are defined:

array_operation_sequence ::s [array_name; arraystore_operation
{; arraystore_operation}]
array_store_operation 2= expression {, expression} => expression

For an array type T, the operation sequence, [A; IR I 24 C)] where A is an object of type T, itol,
are index values for the n dimensions of T, and C is a value of the component type of T, denotes the
value of A after the value of the component A(l, ..., |,) is replaced by C. Sequences with more than
one array store operation denote values of A after the corrresponding sequence of changes to the
values of its elements.

Examplies of array operation sequences in annotations:

[MY_TABLE: 3 => 18]
-~ denotes a value of MY TABLE after MY_TABLE(3) := 16;

SPACE : ELEM_ARRAY:;

[SPACE: INDEX => E; INDEX' => F]
-~ denotes a value of type ELEM_ARRAY.

Array operation sequences may be used as names in indexed components in Anna.

Example of an array operation sequence in an indexed component:

[MY_TABLE; 3 => 18](3)

-=- = 16;

-, - - AR 4 . ' et . . e :_. -.":....‘ -.\:.'_:-;.".;_\;_‘.;.\' ~ \:'\- NN

>

.l..a&".s’.s'_x'\fs.':j

ol
v’

\
¢

7zt

| }}’_3‘ XA

W e
'Ns-""'

WY Ve e W

14 Declarative Annotations

Note: Array operation sequences satisfy the standard axiomatic relationship with array selection, e.g.,
in the one dimensional case:)

[A: I => E] (J) = if IsJ then E else A(J);

Example: Annotation ofa generic SWAP procedure specification using an array sequence:

generic
type ITEM is private;
type VECTOR_RANGE is INTEGER range <>;
type VECTOR is array(VECTOR_RANGE) of ITEM;
procedure SWAP (A : inout VECTOR; I,J : VECTOR_RANGE);
--| whereout A = [in A; I => in A(J);: J => in A(I)]:

3.7 ANNOTATIONS ON RECORD TYPES

3.7.1-3.7.3 No addition.

3.7.4 RECORD OPERATION SEQUENCES
For every record type T the following new names (primary terms).of type T are defined:

record_operation_sequence ::= [record_name; record store_operation

{: record store_operation}]

record store_operation ::= identifier => expression

For any record type, T, the operation sequence of length one, [R, | => C] where R is an object of type
T, | is an identifier of a component, and C is a value of the corresponding component type, denotes
the value of R after the vailue of the component R.I is replaced by C. | must not be the identifier of a
discriminant, and R.| must exist for the corresponding variant. Sequences with more than one record

store operation denote values of R after the corresponding sequence of changes have been made to
its components.

Examples of record operation sequences in annotations:

[BIRTHDATE, YEAR => BIRTHDATE.YEAR +1]
-- denotes BIRTHDATE with a change to the YEAR component.
PRINTER : PERIPHERAL;
[PRINTER; LINE_COUNT => 1]
-= denotes a value of PRINTER of type PERIPHERAL with LINE COUNT setto 1;

Record operation sequences may be used as names in selected components.

Exampile of a record operation sequence in a selected component:

...............................

B

-":.v
N
- ‘ Declarative Annotations 15
:;3;2 : [PRINTER; LINE_COUNT => 1].LINE_COUNT = 1
,- Note: Record operation sequences satisfy the standard axiomatic relationship with record selection,
) e.g.,

-“‘-. g

VS [R: I => E].J = if I=J then E eise R.J;

3.8 ANNOTATIONS ON ACCESS TYPES : .
i:: - In annotations, an access type T has an associated package attribute, TTCOLLECTION, that
.\; encapsulates the collection of allocated objects. The visible operations of T"COLLECTION
.::, correspond to the Ada constructs applicable to access type objects. These operations are also
i available in Anna as attributes of T.

Py

;3'.: Note: [ARM], section 3.8, refers to Collections: "The objects created by an allocator and designated
’: by the values of an access type form a collection implicitly associated with the type."” In Anna the
;“ collection is introduced explicitly for annotation.

+° .

L4 _

;-2: 3.8.1 ACCESS TYPE ATTRIBUTES

\;C For every access type T, defined as,
bo- ' type T is access S;
'_ﬁ the following attributes are defined:

?:3‘22 T'COLLECTION -~ the package collection of allocated .objects of type S (see Appendix G).
> Notationally, it is treated as any other package in Anna (see section 7). The type
-, of its states is denoted by T'TYPE; variables of this type may be declared and used
‘ in annotations. The name, T"COLLECTION in annotations is a variable whose
(23 value is the current state of the package, T"COLLECTION.

oo
B
:_' TTYPE - the type of states of T"COLLECTION.
- T'NULL - the null value of access type T, a visible constant of the TTCOLLECTION
:" X package denoting the same value as S'(null) in Ada.
o)
e T'ALLOCATE(X : ot T).
N - a procedure attribute (i.e., a visible procedure of T'COLLECTION)

corresponding to new S; the out value of X is the newly allocated value. Values
for constraints are added if necessary.

18F

YAy,
LA
L

T'ELEMENT (X : T) - a Boolean valued function attribute, returning TRUE if X has been allocated a
value in TCOLLECTION and FALSE if it has not.

0
PP
ALY aA

i

AR
YO

g'

R)

16 Declarative Annotations

3.8.2 COLLECTION OPERATION SEQUENCES

For every access type T the following new names (primary terms) of type T'TYPE are defined:

collection_operation sequence :: = [collection name; collection_operation
{; collection_operation}]
collection_operation :: = allocate_operation |
selected_component => expression
allocate_ operation :: = identifier' ALLOCATE (identifier)
collection_name :: = identifier :

Collection operation sequences denote states of the collection.

Examples of Collection operation séquences:

[T'COLLECTION; T'ALLOCATE (X)]

-=- the collection after an allocation, X := new S;
[T'COLLECTION; X => A]

-= the collection after, X.all := A;

[T'COLLECTION: T'ALLOCATE(X): X => A]

-- the collection after, X := new S(A): forexpressionA,

-- orafter, X := new S.A; foraggregate A;

{C: X.F => E]}

-=- the collection state that results by starting in state C and performing
-- the assignment, X.F := E;

Collection operation sequences may be used as names in indexed and selected components.
Semantically meaningful terms are obtained if states of T"TCOLLECTION are selected by function calls
of the form, TELEMENT(X), or are indexed using objects of type T.

Examples:

[T'COLLECTION; ...].T'ELEMENT(X)

-= true ifthe value X has been allocated in the collection
[T'COLLECTION; ...]J(X)

-~ denotes the value of X.all

Example annotations on access variables

type T is access S;
X:T := new S(A);
Y:T := new S(B);
==] X =/ Y and T'COLLECTION(X) = A;

declare
u, v : T;
begin
U := new S(A);
-=| T'COLLECTION.T'ELEMENT(U) = TRUE and
-=| T'COLLECTION.T'ELEMENT(V)= FALSE;
V 1= U;
vu.all := B;

X
2P

Declarative Annotations 17

N 4 4
..)
St ‘-SIS{;- i

L

--| T'COLLECTION(V) = B;
end .
--| out T'COLLECTION =
-=| [in T'COLLECTION; T'ALLOCATE(U): U => A; U => B];

£

N

——

5 Notes: The Collection of a derived type is the same as that of its parent type. Axioms for collections
\ are given in Appendix G.

P 0 RIS A R N AT DRI T PR TR -"i
PASIASATF AN o SRR S A ST AR A S AL

rt\{‘
et 18
— : NAMES AND EXPRESSIONS IN ANNOTATIONS
) 2_
5 - s'
tf: 4. NAMES AND EXPRESSIONS IN ANNOTATIONS 1
-~
NN
- 30
. 4.1 NAMES IN ANNOTATIONS
3, \ .n
X ::. The set of names in Ada is extended in Anna by special attributes, by selected components denoting
s&?:;- resulit values of subprogram calls, and by operation sequences denoting package states.
ot
) .
-) name ::= ... adaname...
20 | operation_sequence 1
R
'.\';'\
. T .
! »*' - .
e 4.1.1-.4.1.2 No addition.
e
o 4.1.3 SELECTED COMPONENTS FOR RESULT VALUES
u".;n.
100N Components of the resuit value of a function call can be denoted as selected components in Ada. In
Tkl Anna, the out values of a procedure call (that is final values of formal out or in out parameters) can
Ry be expressed as selected components of a call to the 'OUT function attribute of that procedure (see
(N ,s-" section 6 and Appendix A). In this case, the named parameter form shouid be used for the
.';;'_:} corresponding parameter association to increase readability. The actual parameter denotes the in
N value of the parameter association and can be expressed by an expression (in contrast to Ada, where
28N it must denote a variable).
' ' ‘_ Examples of out values of procedure calls:
\ -
358 POP'OUT(E => X).E -~ final value of actual parameter X
N SWAP'OUT (U => 3,V => 5).U -- value = §
(0
Tal 4.1.4 ATTRIBUTES
13
b ff,.; An attibute in Anna can be a package state (which is a value in Anna) or the type of a package staie
ndd (see section 7). '
J;”M &)
AN 4.2-4.3 No addition.
.\2:&:
A

i
e
-..

4.4 EXTENDED EXPRESSIONS IN ANNOTATIONS

Expressions in annctations are extended by the usual logical implication operators and quantifiers, in
values, out values, conditional expressions, and operation sequences (see 7.7.5).

PAER L

expression ::=
... ada_expression ...
| relation = relation
| relation +»relation

vy
§
i
Ly«
4
ks

PR ay
L
&

¢ X!
o
WAy

)

TR e "'

‘. -\ -\‘ .n"‘.\. \..“ \.n\'i.

RN R IR N UL L PR P N R AR G RN RS
. . b S IR S . Sa e o, “m
" o o -

..

Names and Expressions in Annotations 19
| quantified_expression
| conditional_axpression

conditional_expression ::= it relation then expression
else expression.

relation ::=
...ada_relation...
| simple_expression {relational_operator
simple_expression}
primary ::=
... ada_primary...
| in_value

| out_value
| operation_sequence

4.5 OPERATORS AND EXPRESSION EVALUATION

logical_operator ::= and | or | xor | + | &

The conditional control fornr, if then eise, has the same precedence as the logical operators. Asin
Ada, operators at the same level are applied in textual order from left to right in the evaluation of
expressions.

Note: The most general forms of expressions in annotations cannot always be evaluated.

4.5.1 LOGICAL OPERATORS
Operator Operation Operand Type Result Type
- - implication BOOLEAN BOOLEAN

The implication operator — has the usual mathematical meaning. A «B is defined as (A — B) and (B
- A).

In evaluating a conditional expression form, if A then B else C, the BOOLEAN relation A is first
evaluated. If A is true then B is evaluated. If A is false then C is evaluated.

Examples of conditional expressions:

it T'COLLECTION.T'ELEMENT (X) then T'COLLECTION(X) = A else FALSE
-= this expression has a value when X has, not been allocated

so that T'COLLECTION(X) does not have a value,

-- whereas T'COLLECTION.T'ELEMENT(X) — T'COLLECTION(X) = A
does not have a value.

I] TR T ST PR o i g ey R R
o LT A SN T AT

.............

20 Names and Expressions in Annotations

[A:I=>E] (J) = if I = J then E else A(J)

-= the conditional expression is-used here simply as a shorthand

==for : 1 =3 = Eand not I =J — A(J), thelwo expressions
-- being equivalent when I=J, E, and A(J) are all defined.

Note: — and +have the meaning of < and = on boolean expressions, except that their precedence is
lower to allow relations as subexpressions.

Example of an implication operator:

Stl = St2 « St1.INDEX = St2.INDEX

--is equivalent to.

(St1 = St2 » St1.INDEX = St2.INDEX) and
(St1.INDEX = St2.INDEX - St1 = St2)

4.5.2 RELATIONAL OPERATORS

A sequence of relational operators is defined as a sequence of conjunctions in the usual
mathematical way:

A op1 Bop2 C = (Aop? B and B op2 C)

Example of a séquence of relational operators:

S < SQRT(N) < S + 1
--is equivalent to
S s SQRT(N) and SQRT(N) < S + 1

4.6-4.10 No addition.

4.11 QUANTIFIED EXPRESSIONS

Quantified boalean expressions have the usual mathematical meaning in annotations.
quantified_expression ::= quantifier domain {;domain} => boolean_expression

domain ::= identifier_list : subtype_indication
quantifier ::= forall | [not] exist [that]

The variables in the domain of a quantifier are called /ogical variables and are said to be bound by
that quantifier. Any variable in a quantified expression that is not bound by a quantifier is called free;
it must be a program variable and must obey the usual Ada visibility rules. A quantified expression in
which all variables are bound by quantifiers is called closed.

The scope of the quantified variables in the quantifier prefix is delimited at the left by => and extends
over the subsequent boolean expression. Thus in an expression of the form

for all X:S 2> P(X) and exist Y:T => Q(X,Y)

Names and Expressions in Annotations 21

:;__ the scope of X extends over both P(X) and Q(X,Y), whereas that of Y is restricted to Q(X.Y).

N3 .

N Intuitively, the quantified variabies are interpreted as ranging over the set of values of the
{ subtype_indication. Thus:

for all R:S = > P(X)means "for all values of X of (sub)type S, P(X) is true”;

N existY:T =>Q(X.Y)

‘means "there exists a value of Y of (sub)type T such that Q(X,Y) is true”.

exist that X:S => P(X)
means "there exists a unique value of X such that P(X) is true”, - i.e. the standard
iota operator in formal logic:

f A
D | L

13

Examples of quantitied expressions:

P for all X:NATURAL => X > 1
:;'.; for all N:NATURAL =>
:j. oxist that S:NATURAL => S < SQRT(N) < S + 1;
g :
b .
3 " Note: Type constraints restrict the domain of values of a type declaration. Hence quantification in the
o scope defining the constraint is permitted only over previous complete type declarations (section 3.3).
By
. 4.12 IN VALUES AND QUT VALUES
&
N
,: The execution of a program can be formally modeled as a sequence of state transitions [FORM81]. At
o) each transition, the values of program variables may change. In an annotation, the values of an
expression containing program variables can be denoted reiative to the initial state when the scope is
entered, the final state when the scope is exited, or relative to all states while the computation is in the
. scope of the annotation. The initial or final values are denoted by prefixing the modes in or out to the
," expression.
.ii primary ::= ... Ada_primary...
| mode primary
- mode ::= in | out
&
::3 The in value of an expression E is written as in(E) and the in value of a variable V is written as in V. In
,_ an annotation this denotes the initial value of E or V upon entry to the scope of that annotation.
:j;: Similarly the out value of expression E or variable V is written as out (E) or out V respectively. In an
annotation, it denotes the fina/ value of E or V upon exit from the scope of that annotation. The
A current vaiue of an expression E is written as E.In an annotation, it denotes the value of the
0 expression in each possible state that can be observed ‘as a resuit of a state transition in that scope.
e .
‘;; An in value is elaborated when the annotation is elaborated, except in the case of annotations of a
-, subprogram specification.
. The modes in and out may not be applied to logical variables -- i.e., variables bound by quantifiers in
! * the annotation.
N
T
A .
i‘ ‘
LN ' T3ANS 's'.\’ >, s‘-.‘ AT AT \')\‘f»" TR X At T T AT T T e T e NN NN T \:' NN

e - Sag Uyl s w e WL R Ll RIS N A e D I P TR T e YA A -
N
‘.J‘
¢ 22 Names and Expressions in Annotations
f‘.h'?._o 4
Vi
vt The application of modes to expressions must observe the following rules:
R 1. out may not appear in an expression prefixed by in.
\
] ¥ 2. It modes ara nested in expressions, the innermost mode applies.
AN
\‘-‘\;;' 3. For each mode, ®, and any function identifier, F, ® (F(E)) means F(®(E)).
\'h
s\‘ :\-»
s 4. For each mode, ®, ®(forall Y: T => Emeans for all Y: T => ®(E) where ® may not
o o be applied to any occurrence of Y in E.
it :
) -f
ﬁ}_{.:j S. For each mode, ®, and any indexed component, A(l), ®(A(l)) means (® A)(®(1)).
4 6. For each mode, ®, and any seclected component, R.X, ®(R.X) means (® R).X.
?",S‘; Notes: In an annotation, constancy of a variable can be denoted by in V = V. If the scope of the
,'.:':i‘,“ annotation is a simple statementthen V = out V.
L
LY p ")
W m Example of in values in object annotations: _
\‘ X,Y:INTEGER;
B -=|X**2 + Y**2 < in X**2 + in Y**2;
< == throughout the scope of X,Y, the sum of squares of their values is bounded by
' i‘? -~ by the sums of squares of their initial values
Ll
. Example of in and 6ut values in object annotations:
A type COLOR is (RED, BLUE, YELLOW);:
i ...
e
C : COLOR; --] in C > C > out C;
== all values of C must obey the constraint throughout the scope; .
My == lts initial value must be its largest, and the final value its smallest.
X:INTEGER; --| out X £ X;
N
' ' -~ Aconsequenceis out X < in X;
::jl Example of a type constraint with an in parameter:
i MAX : INTEGER :
"4‘;4 ‘ type FUNNY is array (1..MAX) of INTEGER;
! -- | where for all A : FUNNY: I:INTEGER range 1..MAX=>
. I mod 2 = 0 — A(I) < MAX;
FYE == all occurrences of MAX in the annotation are elaborated in the same way
' -« asin the type deciaration. Thus MAX is treated as having a defauit in mode.
x
§ Exampie of in and out modes in a procedure specification:
A\ .
Y procedure SORT (A : inout INTEGER_VECTOR);
A --| where out(PERMUTATION (A, in A) and ORDERED (A, in A));
N -- the annotation means PERMUTATION (out A, in A) and

” " Names and Expressions in Annotations 23
\'-
‘.}\
230 -~ ORDERED (out A, in A);
N ‘
<.
L’ , 4.13 DEFINEDNESS OF ANNOTATIONS
7 |
s § An Ada expression may not have a value, e.g., if it contains an uninitialized variable. Similarly, an ‘
"._: annotation may or may not have a value (i.e., be defined). This generally depends on whether its ‘
! subrelations and subexpressions have values. in particular its subrelations and subexpressions must
be defined over all values in the domains of quantification of the logical variables occurnng in them.
o~ Annotations that do not have a value are called undefined.
.. .
:".'I The rules defining the value of Anna quantified expressions extend those for evaludting Ada
) 32 expressions as follows:
l
. 1. Ada operators are evaluated according to the Ada rules.
,% y 2. A term, f(X), in the case where f is a virtual Anna function without a body is defined if X
‘ has a value and the retum expression in the result annotation of f has a value for the

A3
“z ": VSIUO Of x-

% ‘3 3. A — B has a value if both A and B have values.
\ 4.1t A then B eise C has a value if A has the value TRUE and B has a value, or A has the
;:',“ ‘ value FALSE and C has a value.

, S.forall X: T =) A(X), exist X: T => A{X) have values if A(X) has a value for every value of
3. the (sub)type T.

53
\,,.
. :'.j Examples of values of quantified expressions:

‘ forall X,Y : INTEGER => X DIV Y = X DIV Y;
,,) -=- is undefined since X DIV 0 is undefined.
bt
3 - forall X,Y : INTEGER => it Y= 0 then TRUE
Aty else X DIV Y = X DIV Y;
*’5}, -- is defined since the conditional expression has a value for all
o -= values of X and Y. Its value is TRUE.
0%
L4, -
s"-: Note: The classical interpretation of the logical connectives requires that expressions such as A or B,
2:;; A = B, etc. do not have values if either A or B does not have a value. Since annotations extend the
! set of Ada expressions it is clear that A or B may be undefined. Conditional expressions are
oy introduced into Anna to permit the programmer to construct annotations that are defined from

expressions buiit up from partially defined functions.

s

o

&
-

A AR
AAEA,

o %]
AAN

iy S G
o

. o

Gl

» 1]
AT

o

7 & i
s
Th Y SV N

L

)

w f

yor

1)
%
o X

ot
S APE >,

i Lo

L
T3
el Tl

,,,r_‘},,,v
RN

3 = 2
77o]
SR I_'_‘L’L’x

X
;‘b
oy

Ty AP ?ﬁa}l
Pl B &
ol edo | |

1=

24 : STATEMENT ANNOTATIONS

5. STATEMENT ANNOTATIONS

A statement annotation is an annotation in a statement position.

statement ::s= .. .adastatement...
| statement_annotation

statement_annotation ::= boolean_expraession

The scope of a statement annotation is the imniediately preceding statement; the scope may therefore
be empty.

A’statement annotation is a constraint that must hold during the execution of the statement in its
scope. It is equivalent to a declarative constraint in the declaration part of a virtual biock whose body
is the given statement. Elaboration of a statement annotation takes place immediately before
execution of the statement in its scope. '

A statement annotation,
-=| C;

containing only in and out values (see 4.11) or eise annotating a simple statement, is conceptually
equivalent to a call ASSERT (C), where _

procedure ASSERT(B:BOOLEAN) is

begin _
it 8 then
return TRUE;
eise
raise CONSTRAINT_ERROR;
end if;
end;

Examples of statement annotations:

X := 0; --|X = 0;
X := X + 1; -=|X = in X + 1;
==note that in annotations of simple statements X = out X

it A(X) > A(X + 1) then
Y :=2 A(X + 1);
A(X + 1) :3 A(X);
A(X) := Y;
end if
==| out A(X) < out A(X +1);
== note that A(X)< = A(X + 1)is not always true, e.g., before or after
== the first assignment, so the out-mode cannot be deleted.

Example of annotations of a loop:

while LOW < HIGH loop
MID := (LOW + HIGH)/2;

NN NN L NS

) CCa & f\ B

"v

c."

.

" Statement Annotations 25
..‘

o, it X > A(MID) then

"1 LOW := MID + 1;

P else

' ' HIGH := MID;

\ end if;

L end loop;

E‘. -<| in LOW <= LOW and HIGH <= in HIGH;
i ==| LOW <= MID+1 and MID <= HIGH;

N -=-| ORDERED(A, in LOW, in HIGH) and

-«Q -=-1 (ISININTERVAL(X, A, in LOW, in HIGH) ->
}\\g ISININTERVAL(X, A, LOW, HIGH))

2 -=- this constraint must be true of computation states
-= throughout the execution of the loop body.

Notes:

1. In annotations on simple statements, a current variable X denotes out X.

! 2. A statement annotation inside a loop acts as an inductive assertion in the sense of the
5, Hoare invariant [Hoare 69}]: the assertion must hold each time the annotated statement is
b executed within the loop.
N
<

Reference: in and out values 4.11.

DCRE:
5! P

o v

L2

e an

?

[4

XIS

LA e

5 TN

&

¥
el

.
-

PP 3
y
.
£;
ot DIYI I M

%

I

g

l.; }

k)

é‘:‘zﬁ“

el
AL
;Qf?l

|

13

SUBPROGRAM ANNOTATIONS

26
6. SUBPROGRAM ANNOTATIONS

Subprogram annotations are declarative annotations appearing in a subprogram specification. The
scope of application of a subprogram annotation is the same as the subprogram declaration.
Consequently a subprogram annotation must be true of every calf to the subprogram and it must be
true over the subprogram body.

6.1 ANNOTATIONS ON SUBPROGRAM DECLARATIONS

Annotations of subprogram declarations include constraints on formal parameters and results of
computations, and conditions under which exceptions may be propagated. Annotations of parameter
values and computation resuits are dealt with in this chapter; for propagation annotations see section
1.3

subprogram_declaration ::=
...ada_subprogram_declaration...
{where boolean_expression;}
[resuit _annotation;]
{propagation_annotation;}

The different kinds of annotations of a subprogram declaration permit statement of (i) annotations on
formal parameters (either in the parameter list or by means of the where clause) that constrain
parameter values on entry to, during execution of, and on exit from a subprogram, (ii) constraints on a
returned function velue (by means of a result annotation), and (iii) constraints governing propagation
of exceptions.

The reserved word, where binds a boo/ean expression annotation to a subprogram specification; this
is a declarative constraint on the subprogram. It must be true of all cails (i.e., it has the semantics of
a statement annotation on all calls), and it must be true of the implementation (i.e., it behaves as a
declarative constraint in the body of the subprogram).

These annotations permit formulation of entry/exit conditions in general. The in value in V refers to
the value of a variable upon entry to the subprogram, the out value out V refers to its value upon exit.
A parameter annotation containing only in values is equivalent to an entry condition, i.e., a condition
that must be true before every call (section 6.3). An annotation containing only in and out values of
variables is equivalent to an exit condition. However, a parameter annotation containing a current
value of a variable V is a stronger constraint since it hoids throughout the execution of the body and
implies corresponding entry and exit conditions.

Annotations of a subprogram declaration are elaborated when the declaration is elaborated. At that
time the operations performed are exactly those performed in the Ada elaboration of the declaration
that apply to the annotation - i.e., the elaboration of expressions that are legal in the underlying Ada
declaration. The resuiting annotation constraing both the subprogram body and all calls to the
subprogram. As a constraint on the body it is then treated as an annotation in the declarative part of
the subprogram body. The Anna elaboration of in mode expressions is performed when that
declarative part is elaborated. The corresponding constraint on a call is obtained by the substitution
of actual parameters for those formais of the subprogram specification that appear in the annotation.

I).‘b

¢‘¢ "-’n~'..'l._- ot

., R
N 3

" P
o o + b a
» 4 1’ l} (Y "T'. ;.‘1}"7}‘ f'.

Lo 9. S)

. .
D
DR AP W

.
e

‘. ‘! ‘l .l
XA
Sl

o
R

Subprogram Annotations 27

Examples of annotations of subprogram declarations

procedure RIGHT_INDENT (MAR'GIN : out LINE_POSITION);
==} where 1 < out MARGIN < 120;
-=-an exit condition, see section 6.3.

function "/" (NUMERATOR, DENOMINATOR : INTEGER) return INTEGER;
--| where DENOMINATOR # 0;
==| an entry condition.

procedure INCREMENT (X : inout INTEGER):
--| where -2°*38 < X < 2**36;
-- aparameter constraint that must hold during execution.
--| whereout X = in X + 1;
== an exit condition.

function COMMON_PRIME (M,N : INTEGER) return INTEGER;
-=| return P : NATURAL => M mod P = 0 and
--] N mod P = 0 and IS_PRIME (P);
-= aresult annotation, see section 6.5.

The generic parameters of a generic subprogram may appear in its annotations. In this case the
annotations are also generic and define a template for annotations obtained by applying the Ada rules
for instantiation of generic subprograms. Each instance of the subprogram is annotated by the
corresponding instance of the generic annotation.

Note: For an in out parameter X, the declarative parameter annotation
inX =outX

means that the value upon entry is the same as the value upon exit, whereas,
inX =X

means that throughout the subprogram body each value of X is the same as the value upon entry, i.e.,
the value of X remains constant.

6.2 FORMAL PARAMETER ANNOTATIONS

parameter_declaration ::=
...ada parameter declaration...
| declarative parameter_annotation

dectarative_parameter_annotation ::= boolean_expression

Declarative parameter annotations may be given on individual parameters in the formal part as well as
foliowing the reserved word where subsequent to the subprogram specification. In either case the
semantics is the same -- i.e., the constraining condition must hold for calls and throughout the scope
of the body of a subprogram.

Objects dectared globaily to a subprogram declaration or body are treated as if they were additional
parameters: constants correspond to additional in and variables to additional in out parameters.

¥ ¥ v ¥ W,
Ay 'l“‘: N
I l" » &

o
54
-

A
"
PICROAAA

X
[

W) b

&
APCH

20
A

o
=~

522
XA

28 . Subprogram Annotations

Examples of formal parameter annotations:

procedure EXCHANGE (FROM, TO : in INDEX; --| FROM < TO);

procedure P (X: in INTEGER; --|X > 0;
Y,Z: inout INTEGER):;
--| where Y < Z;

--here X > 0 and Y < 7 must hold throughout the body,
--and imply the entry assertion in X > 0 andin ¥ < in Z
--and the exit assertion out Y < out Z

Note:

Annotations constraining parameter values may be placed in the parameter list or in the where
clause; the choice is basically a matter of taste in maintaining the Ada formatting of the formal part of
a subprogram specification.

6.3 ANNOTATIONS ON SUBPROGRAM BODIES

subprogram_body ::=
... Ada_subprogram_specification ...
{boolean_expression;}
[result_annotation;]
{propagation_annotation;}

is
declarative_part
hegin
saquence_of_statements
[exception

{exception_handler}]
end [designator];

For a subprogram body, the sefmantics of annotations of the subprogram specification part of the
body, including result and exception annotations, is the same as for annotations in a subprogram
declaration. The syntax differs only in that the reserved word where may be umitted.

If a subprogram declaration and its body or stub occur in the same declarative part, the annotation of
the specification parts of both must be identical. As in Ada, if a subprogram specification part with
annotations is repeated, the second occurrence is never elaborated.

Example of an annotation of a subprogram body:

procedure SWAP (U,V: inout ELEM)
--} out U = in V andout. V = in U;

is

T : Elem := U;
begin

U:=sV; V:=T;
end SWAP;

Subprogram Annotations 29

iy Notes:
f- 1. For a virtual Ada subprogram specification, a body need not be supplied.
1
. 2. The reserved word where may be omitted from annotations of the specification part of a
Y subprogram body since no ambiguity with annotation of other units can resuit.
I\.
<
£ 6.4 ANNOTATIONS ON SUBPROGRAM CALLS
e Annotations on subprogram calls are a special case of statement annotations. A subprogram call,
:;.“,- like any simple statement, is considered to be an atom:ic operation. Thus, a current value, X, in an
.-~ annotation of a subprogram call denotes the final value, out X. Similarly, the values of an actual in
out parameter on entry to and exit from a call can be constrained by a cail annotation; its values
during execution cannot be constrained by a call annotation.
Ol
3.: Annotations of subprogram declarations impose constraints on the in out values of actual
. parameters of calls. The actual constraint on a call is obtained by substituting the actual parameters
. of the call for the formals in the declarative annotation.
_ Examples of annotations on subprogram calls:
Iy *‘
’al SWAP (A, B): --] out A = in B andout B = in A;
4_{-' ==constraint on a call imposed by the previous annotation on the body of SWAP
a-:‘
i P (F, I, Z): --] in I < in F andout I < out Z;
.ﬁ)
L 8.4.1 THE 'OUT ATTRIBUTE.
t To facilitate construction of expressions involving the out values of procedure parameters resuiting
g from calls, Anna associates a function attribute, 'OUT, with each procedure. If P is a procedure,
N P'OUT is a function returning a record whose components are the out values of the in out and out
_':-, parameters of P. These values can be selected using the names of the formal parameters of P. The
' :i parameters to P'OUT are the same as those of P.
o,
Examples of expressions using the 'OUT attributes to denote out parameter values:
&5 procedure BINARY_SEARCH(X : ORDERED_ARRAY; K : KEY; R : out INDEX):
d ..
2 --| A (BINARY_SEARCH'OUT(X => A, K => 10, R => PLACE).R) = 10;
— procedure POPTOP (Y : out ITEM);
N -=| [STACK: PUSH(X)].POPTOP'OUT(Y).Y = X;
‘: -=~the out value ol Y after applying in sequence PUSH(X) and then
‘ol -~POPTOP(Y) to a STACK package is denoted by the ieft side expression.
b, '
o
)
~'
Lo

Ry

e . eta el e & Mt e e e e e . ettt e e . R . e et e tatate e vt

\' Y. . g "y 0" R R TR TR TR S S T e T et N e e e T L TR % .‘-.n e e
O A o T T T N S N P A P I SR

4 ol L YOV LA, SR AL SR Y U L L L L Y T, S L

Subprogram Annotations

6.5 RESULT ANNOTATIONS FOR FUNCTION SUBPROGRAMS

result_annotation ::=
return[[that] domain =>] expression

A result annotation specifies the result of a function. It is preceded by the reserved word return and
will normally contain as free program variables the formal parameters of the function and its global

variables. The quantifier that is expected to be useful in characterizing unique solutions to
expressions.

Example of a result annotation:

function SQRT (N: NATURAL) return NATURAL;
==| retumthat S: NATURAL => S**2 < N < (S+1)**2;

6.6 EXAMPLES.

LS I .
I IO
B} I Y Y,

-
La Subprogram Anno}a!ions 31
o~
-'~~
o 1. Dijkstra’s Dutch National Flag program
j"{ == CONCEPTS is a virtual generic package defining the annotation concepts
XY == PERMUTATION and SWAPPED. It is instantiated for each context (i.e.
{ -~ set of types). CONCEPTS does not have a body.
A .
lﬂ\j --: genaric
o --: type INDEX is (<>);
! - type ELEMENT is private;
™ --: type GENERIC_ARRAY is array (INDEX) of ELEMENT;
" -=-: package CONCEPTS is C
X
f; --: function SWAPPED(A: GENERIC_ARRAY; I,J: INDEX) return GENERIC_ARRAY;
Lo . :
{t --: function PERM (A, B: GENERIC_ARRAY) return BOOLEAN;
N
4 -~| axiom for all A,B: GENERIC_ARRAY; I,J: INDEX =>
‘i.\i
o - SWAPPED(A,I,3)(J) = A(I) &
N -- SWAPPED(A,I,J)(I) = A(J) A
O == (K#I A K#J — SWAPPED (A,I,J)(K) = A(k)) A
R

--1 PERM(A,A) A

- (PERM(A,B) — PERM(B,A)) &

(PERM(A,B) A PERM(B,C) — PERM(A,C)) &
PERM(SWAPPED(A,I,J),A);

AR

--: end CONCEPTS;

e constant N: INTEGER := ...;

NN subtype INDEX is INTEGER range 1 .. N;

- type COLOR is (RED,WHITE,BLUE); '
>, type COLOR_ARRAY is array (INDEX) of COLOR;

--: package CONCEPT_INSTANCE is new CONCEPTS(INDEX,COLOR,COLOR_ARRAY);
--: use CONCEPT_INSTANCE;

N --: function FINAL (C: COLOR; A: COLOR_ARRAY; I,J: INTEGER)
) -=: return BOOLEAN;
N = return for all K in range I .. J-1 => A(K)=C;

.
4

Sl
RN
22

K12

ol
SN
AR

1'4

L I I T ¥ S S S Ry o DT RPN R L LAY WrY

DAL PRI P S P I TR S TNt R I S SR S N A PR TR SIS S PSR)

PR B "y’ LA R I . S R SR P I S
- Y R PP S T - e PR L . .
A'I:'i'.'l..(._f ::;m&-l_&t_‘-‘.‘. AN "‘::\‘-. ‘ate e 'l '.’.'A DO RS R RS -‘}.' _‘-'J

- o . - L T T T

P
h)

B nt:"fﬁf

-

't

‘.

RN XNNR

-«

-~

)

rd
&

=

¢ ’,-,__,1-;-'_;:-:1.3 |

O 0N

*

. , ’
1) & .

"

ca® .

. T e T s .
Y FSTRTON D A ST TSI NSNS 5 PRSI A

e wt TR i U Ba B A e A A RS N, L A A A RER SN

32 _ Subprogram Annotations

function SWAP (A: COLOR_ARRAY; I,J: INTEGER) return COLOR_ARRAY;
-=-| return SWAPPED(A,I,J);

procedure DUTCH(A: in out COLOR_ARRAY; N: INTEGER; I,J: out INTEGER)
--] in 1 S N;
-=| PERM(out A, in A);
==| out (1SI A IsJ A JSN A FINAL(BLUE,A,1,I)
==] A FINAL(WHITE,A,I,J) A FINAL(RED,A,J+1,N+1));

-- end qf ANNA procedure specification
is

K : INTEGER; --| K $ N+1;

-=| PERM(A,in A);

-- A and K are constrained throughout the body.
begin

I :=1;

J = 1;

K := N+1;

loop --| FINAL(BLUE,A,1,I) A FINAL(WHITE,A,I,J) A
--| FINAL(RED,A,K,N+1); -~ see Note 1
exit when J >= K;
it A[J] = BLUE then
A := SWAP(A,I,J);
J s J+l;
I := I+1;
elsif A[J] = WHITE then
J s J+1;
else -= A[J] = RED, see Note 2
K := K-1; '
A := SWAP(A,J,K);
end if;
end loop;
==] 1sI A 1<J A JsK; -~ see Note 3
end DUTCH;

Notes:

1. This assertion has the same semantics as a loop invariant in Hoare's sense.
2. This is an informal comment, but it couid be written as an annotation.

3. A statement annotation of the loop statement (i.e., it holds everywhere within the loop.)

Each annotation in the body of DUTCH appears at the place where its scope is largest. These
annotations are sufficient to prove the out specification of the procedure. Note also that the
inequalities annotating the loop cannot be expressed as object constraints in the declarative part as i
and J are out parameters that cannot be initialized except in the statement part. This is a case of ADA
getting in the way of the most natural form of annotation.

Alternative definitions:

B “4'._...' vy -

...................

T R TANM NN R ATY W VA LY OV RN

E Subprogram Annotations 33
o FINAL could be defined by:
Y --| return if I2J then TRUE
tadd -- else (A[J-1]=C a FINAL(C,A,I,J-1))
-- v (A[1]=C A FINAL(C,A,I+1,0));
5
o SWAPPED could be defined as:
e -- SWAPPED(A,1,J)(K)
-- = if K=I then A(J)
' -- elsif K=J then A(I)

-- else A(K);

PACKAGE ANNOTATIONS

7. PACKAGE ANNOTATIONS

New annotation concepts are introduced to permit adequate annotation of packages and of programs
that use packages.

The basic concept used in annotations of the visible part of a package or of a program using a
package is the package state. Viewed from the outside, a package is treated conceptually as a
composite object of some new (not defined in Ada) type. The values of this type are callied states. in
Anna, package states are denoted by identifiers and by sequences of operations. For each package
the type of its states and the value of its initial state are attributes of that package. The name of a
package may be used to denote its state in annotations.

A second fundamental concept is the package axiom. Axioms are annotations deciared within the
visible part using the reserved word, axiom. They express properties of the visible elements of a
package that are guaranteed by the implementation in the package body. Axioms behave as
promises outside of a package and may be assumed by ail programs using the package. The
package body is constrained by the axioms; that is, the implementation of the package must satisfy
the package axioms.

This chapter describes the new annotation concepts for packages.

7.1 PACKAGE STRUCTURE

Package annotations may appear in the visible, private, and body parts of packages. For the
purposes of annotation, the private part of a package should be considered as part of the package
body. However, Anna maintains the Ada package structure, so annotations may appear separately in
both parts. Annotations in the visible part of a package specification are called visible annotations;
annotations in the private part or body are called hidden annotations. The information contained in
the Ada package specification is only sufficient in general for correct syntactic use of the package.
The purpose of visible annotations is to complete the description of a package. The information
conveyed by the visible annotation should be sufficient to understand how the package functions and
to make it unnecessary for a user to inspect the implementation in the private part and body. Visible
annotations of a package specification have many possible uses. First, they provide information that
may be used to classify the package (in a database say) independently of any implementation.
Second. they can be used in determining correct interfacing either during bottom up program
development when the implementation of a package should be concealed, or during top down
development when an implementation is not yet available. Thirdly, during top down development,
visible annotations detining-the desired properties of a package provide a guide for the impiementor;
the package body must satisfy the visible annotations. Annotations of the private and body parts of a
package have two purposes. - Description of the intended behaviour of the implementation of the
package in the package body, and definition of a representation of all concepts used in the visible
annotation in terms of the local elements of the package body.

A generic package declaration defines a template for packages obtained by instantiation of that
declaration. Annotations of a generic package may contain the generic parameters. Such
annotations therefore define a template for package annotations obtained by applying the Ada
generic package instantiation to them. Instances of a generic package are annotated by
corresponding instances of the generic annotation.

St

A

Package Annotations

For a virtual Ada package specification in Anna, a private part or body need not be supplied.

7.2 VISIBLE ANNOTATIONS IN PACKAGE SPECIFICATIONS

Annotations in the declaration part of a package specification are called visib/e annotations. They are
declarative annotations and their scope of application is the scope of the package declaration.
Visible annotations are constraints over their scope of application except in the case where they are
declared as the axiom of the package (section 7.2.1). '

Annotations on any declared item in a package specification may be included in that specification.
These may be annotations of types, objects, or subprograms as before. They may also be annotations
of exceptions (Section 11), generic parameters (Section 12), or other packages. An annotation of an
individual item declared in the package specification has the same semantics in its scope of
application as any annotation of the same kind of declaration; i.e., it has the semantics that would
resuit if the name of the item were qualified by the package name and the package specification
boundary was deleted.

Annotations in a package declaration are elaborated when the declaration is elaborated.

Generic formal parameters may appear in annotations. The formal parameters are replaced by the
corresponding actual generic parameters in the generic instantiation at elaboration and must ocbey
the Ada matching rules. An annotation in the generic part of a generic package declaration may be
used to constrain the actual generic parameters in instances of the package.

Notes:

1. Annotations of array record and access types (sections 3.6 - 38) are special cases of
annotations of the vigible parts of packages.

2. Tn state visible properties, it is often necessary to introduce auxiliary operations, for
example, by means of declarations in virtual Ada text. Such auxiliary operations cannot
be wsed in the underlying Ada program; their only purpose is to aid in the annotation (see
section 2.7.1).

3. Vigible annotations may refer to individual items or may describe properties about the
interrelation of visible items.

4. Vigible annotations will normally include statements about package states, in particular,
statements about sequences of package operations, since such statements provide a
very powerful means of expressing properties of groups of visible items in the package
specification (see section 7.7).

7.2.1 PACKAGE AXIOMS

In Anna an axiom may be declared in a package visible part. An axiom is a quantified boolean
expression following the reserved word, axiom.

ORI L IR R R TS Tt - T IR R R T A LT
a . " . " . BRSNS OSSR RS SO

.....
.........................

g 36 Package Annotations
N ¢
A3
t‘,’:’j package_axiom ::= axiom quantified Boolean_expression
aA L .
TN
"4"4 After elaboration a package axiom must be a closed quantified expression not containing free
\ program variables (section 4.11).
N
ALEO
:T:-j.; In general, an axiom will be a conjunction of Boolean expressions which are referred to as the
:::‘::: package axioms. Package axioms express properties of the visible entities of the package that are
.f‘. b.

guaranteed to hold true in the scope of visibility of its declaration. Thus, for example, in analyzing the
correctness of a program that uses a package, the package axioms may be assumed. Package

o axioms constrain the body of the package; i.e., the implementation of the package must satisfy its

~¢) axioms.
&
v'\i .,\‘, Example of axiomatic annotations for the package STANDARD :
el

package STANDARD is

%-. . o .

3% -=| axiom
420N -=| (forall A, B, N : INTEGER => A mod B = (A + N * B) mod B) and
‘e -=| (forall A, 8 : INTEGER =>

== A = (A/B)*B + (A rem B)) and

‘“".;,;.,3 -=] (-A)/B = -(A/B) = A/(-B) and

‘{'y,’. -] A rem (-B) = A rem B and
Pl | (-A) rem B = -(Arem B)) and . . .;
:’f"'l
st'(j .
B end STANDARD;
N,
.:-r..:i.
\~:~; Example of generic axioms of a generic Stack package:
IR

' generic
agam type ELEM is private;
.?_".}3 ﬁacl.(age STACK is

- --| axiom ‘

LA == forall St : STACK'TYPE; X, Y : ELEM =>’ !
200 --| [St: PUSH(X); POP(Y)] = St and .
o in! -=1 - St'INITIAL.LENGTH() = 0 and . . .;

-

Xy
‘-'\. L[] . . .
— end STACK; ‘
i |
j.;f‘ Note: If axioms are to be given for a user-defined type, the type declaration must be encapsulated in a
{,-,{:C package. Generally this will be a private type declaration and the visible operations of the package

will be the constructors and selectors of the type.

L - o AL G A A" A A p A A Al e R A N I Y T T I LV R A T A AR RA TR AR S YA
N ‘
O Package Annotations 37
or
AN
> 7.3 HIDDEN ANNOTATIONS IN PACKAGE BODIES
N
<
N
\ Hidden annotations of a package consist of the annotations in the private and body parts. Hidden
. annotations have two purposes.
AR
! 1. To specify the intended. behaviour of the implementation of the package. For this
N purpose annotations of types, objects, statements, subprograms, and packages are used
Zi ‘ to specify all entities declared within the body. These entities include both the bodies of
s entities declared in the visible part of the package and entities that are local to the body.
3 . 2.To specify the implementation of all virtual entities declared in the visible part of the ‘
Ij-:'.; package. Such entities will normally be declared for use in visible annotations. All visible i
N © - entities must be redeclared in the package body; this includes both Ada entities and
:.“‘s virtual Anna entities. Hidden annotations must specify the virtual entities even though
‘ bodies need not be supplied for virtual units. in particular a virtual private type must have
.'* a completed declaration either in the package body or private part.
‘!':C:
3:}: Example of an auxiliary declaration for annotation of a STACK package:
Eo
» --: function LENGTH return INTEGER range 0 .. MAXSTACK;
W --| return STACK.INDEX;
AL -= LENGTH is a virtual function used in visible annotations of STACK.
"j -- This specification with annotation is declared in STACK body where
T -~ the local variable, INDEX, is visible.
N 1
-3
" Notes:
",’i 1. Although Anna auxiliary operations must have annotated specifications in the package |
3 body, no explicit bodies need be supplied. ‘
e : : . |
LD !
;‘-‘ 2. The package state type, 'TYPE, has a defauit type definition in the package body (section ‘
7.7.4).
e 1
3. The declarations of private types and annotations of visible (actual and virtual) entities 1
tigt! allows verification of the desired properties stated in the visible annotations in terms of |
134 the implementation chosen in the body. ' 3
Jaciy |
. _ |
e 7.4 ANNOTATIONS ON PRIVATE TYPES ‘

Private types may be annotated by both type constraints and package axioms.

<

)
aVa"a %’

A
Constraints on private type declarations must obey the same restrictions as any type constraint and
K have the same semantics (section 3.3). .

S

.'
AL

A constraint on a private type declaration in the visible part of a package will constrain only the
optional discriminant and defauit values since no other structure is visible.

1

O
.

Private type annotations in a visible part will in general be axiomatic. These will be given using the

O
ol ":‘:\".‘

LN
"..l

(D

..
-

w]

>

Y
38 Package Annotations
3538
E :‘,}.': visible operations of the package, including virtual operations declared in the visible part for purposes
"tj of annotation. The axioms will define the properties of the allowable operations on the type. Thus the
f\-}: o Ada package and private type constructs together with the Anna package axioms provide a powerful
‘) : method of defining abstract data types independently of any impiementation.

',‘{3 A constraint on a private type declaration in the private or body part is a type constraint over the
SN package private and body parts. As such it constrains all values assigned to variables of the type
8 :'-}.: within the hidden part of the package. As a consequence, parameter values and function return

Lo\ values of the type must obey the constraint for all subprograms whose bodies are in the package

- body. Since values assigned to variables of the type declared outside the package can only be
..3‘.-.34 constructed using the visible subprograms of the package, it follows that the values of outside
N variables will also obey the hidden constraint. Hence, such constraints may be assumed on entry to
S any visible subprogram. .

A
‘N)
‘ Annotations on a limited private type declaration may use equality on that type (even though
D, equality is not available in the Ada text). It must be remembered that equality in annotations always
b ¥ ! denotes logical identity - i.e., it obeys the substitutivity axiom.
A5 g
y %35
"‘?o..f Notes:
‘ 1. Visible annotations on private types are essentially abstract data type specifications.
"GP '
}_.i:: 2. Virtual private types declared in the visible part of a package may have their full
f.:} declaration in either the private or body part.
,;ﬂ_-:

3. Hidden constraints on private types generalize Hoare's concept of Monitor invariant
oy (section 7.7).

P A
¥ ;ﬁ: Example of a visible axiomatic annotation of a private type

e

PAN package KEY_MANAGER is

- type KEY is private;
: {\.;-: NULL_KEY : constant KEY;

Tals procedure GET_KEY (K : out KEY):

,3.:.‘-.-: function "<" (X,Y : KEY) return BOOLEAN;

5:;- --| axiomtforall K : KEY => NULL_KEY < K or NULL_KEY = K;
55 .‘ . . . M

. end KEY_MANAGER:

, .
2

NN
i 7.5-7.8 No addition.
"

2

nSe 7.7 PACKAGE STATES

s

3:;/.": The basic new concept introduced in Anna for use in package annotations is the package state. This ‘
, concept is intended to facilitate writing external annotations, i.e., visible package annotations that
Y express properties of the visible entities, and also annotations of programs that use the package.
R |
)
0
(a3

e
o

. ’ .

4
5

- s) . v ‘.’\.f’ .d'-.' " ’_.-'.'-’.. -‘.'-...;'_ '(-;4 ';...;...:‘..:..'-'.4'.-:.‘;_.' .';'. 7 . . e \ “ . .'- - .'. SR] o . '-.---‘:- LI IR

Package Annotations 39
v
’ $ Viewed from the outside a package is a composite object of some new (not defined in Ada) type. The
N values of this type are called package states. The type of the states is introduced as the 'TYPE
. attribute of a package. The structure of a package state is not visible from the outside. Thus a

7 package state type behaves exactly as a private type exported by that package.

,:: Whenever a call on a vigible procedure of a package is performed, a change in the package state may
‘ j_{ resuit. States resulting from the execution of a sequence of procedure calls can be denoted in Anna
N by operation sequences. Operation sequences are terms in Anna.

33 i 7.7.1 STATETYPES

h { The type of all states of a given package P is denoted by the attribute P'TYPE. It is called the state

type of P. The state type behaves in Anna as a virtual private type declared in the visible part of P. It is
introduced as an attribute so that the virtual declaration is omitted. It may be used in annotations and
virtual program text exactly as any other type. If P is a generic package and Q is an instantiation of P,

; then annotations for Q are obtained from the annotations of P by applying the Ada generic
3; instantiation rules and by replacing P by Q everywhere. Thus, if P is generic then "P" acts like a
1} generic parameter in annotations. Equality is predefined on state types in Anna. However it may be
b redefined by a virtual declaration of " = " in the package body (see section 7.7.3).
N
‘ - Examples of annotations of state types:
f-.: forall St1,St2 ; PLOTTING_DATA'TYPE => S1 = S2;
«,'.' A -~ the PLOTTING DATA package has no body so its

~-= states are all trivially equal [ARM, 7.2).

a forall S1,52 : RATIONAL_NUMBERS'TYPE;: X,Y ; RATIONAL =>

Y S1.EQUAL(X,Y) = S2.EQUAL(X,Y):

" -=- the value of the function EQUAL on any two rationals is independent .
o~ -=- of the state of the rational numbers package [ARM, 7.3].

L

forall S : STACK'TYPE ; X, Y : ELEM =>
(S : PUSH(X) : POP(Y)] = S
-= for any state S of a STACK package, if a PUSH operation
-~ is performed followed by a POP, then the resulting state
5 -- isequalto S. Note that STACK is generic and the annotation is
a template for all instances.

b

«

™ 7.7.2 CURRENT AND INITIAL STATES
N
o

The current and initial states of any package are new primary terms in Anna. The current state of a

package at any point in a program is denoted by the name of the package. The inlia/ state is denoted
fe by the attribute, 'INITIAL. The initial state of a package is the state after the elaboration of its
y ‘ declaration (that is, after execution of its body, if any).

! Examples of current states:

STANDARD -= current state of the package STANDARD,
*3 STACK_INSTANCE -- current state of the package STACK_INSTANCE

PV o

B ST ad sl il BN ') R N R o AN N N SO PR A N

’c“-
by
Fhv)
4

g -
XD
PP IR

P4
‘J
A

/l

<’
ey

S
e

(]
e

O
Ny W Y
AV

Fa-

™ T35
.,
FUR

« “
4 &

B4 L

.

~ Sl ‘;u

..w,_
=5

FEEM
LA :ﬁs

< IRFY

i

’.’f"..';' *
Py

o3

& l‘.&t’"-’ t :

=

]

I.

QP B - ot
o
P L L)
4";‘...‘.;.4.*“ / 'y

.
{

.'-'x"'."
S

~

2

40

Package Annotations

Examples of initial states:

KEY_MANAGER' INITIAL \--initial state of the KEY MANAGER package [ARM, 7.4.1].
STACK ' INITIAL\-- initial state of any instance of the generic STACK package;

7.7.3 STATE COMPONENTS

Inside a package body the state type may be treated as if it has an implementation as a record whose
components are al// the local objects of the package body. Here, in addition to objects in the Ada
sense, the states of local packages are also included.

More precisely, let a:T , b;T,... be the local objects declared in the body of package P. Let m, n, ... be
the nongeneric packages declared in the body of P. Then P’'TYPE may be treated as if in the
declarative part of the body of P there is a type declaration of the form:

type P'TYPE is record
| a: T,;
b: Tz‘

m: m'TYPE;
n:n'TYPE;

end record;

This Anna convention permits selection on states using the names of local objects. Selected
components of states may appear in expressions wherever the component names are visible.

Examples of expressions involving internal state components:

KEY_MANAGER' INITIAL.LAST_KEY = 0
-= internally any state of the KEY MANAGER package has a LAST KEY
-=- component; its initial value is 0 [ARM 7.4.1].

for all S : KEY_MANAGER'TYPE; K : KEY =)

[S: GET(K)].LAST_KEY = S,LAST_KEY + 1;
-= application of the GET prodecure in any state of KEY MANAGER
-~ increments the LAST_KEY component of that state.

for all S : STACK'TYPE => 0 < S.INDEX and S.INDEX < SIZE;

== an internal generic invariant on all states of all instances of STACK.

Equality on state types is predefined as the identity on P'TYPE, It may be
redefined for a given package by a virtual declaration of the function "="
on state types in the package body. Annotations of such a declaration must
imply that the "=" satisfies the axioms for equality

(see examples in section 7.8).

DA
2
- Package Annotations 41
[.
<
L 7.7.4 OPERATION SEQUENCES
'jf{; A state transition is the effect of executing a statement or of an elaboration. A subset of all possible
h - state transitions that may occur during execution of a program are those due to subprogram calls
\ ., (including calls to functions with side effects on global variables). Those package states resulting
. from sequences of completed calls to visible subprograms of the package are given a special notation
,.\' X in Anna as operation sequence terms. This provides a convenient and powerful method for
'* v annotating the visible parts of packages.
L . .
An operation sequence in Anna denotes the state of a package after execution of a (sequence of)
RN subprogram call(s) to that package.
N | -
~e operation_sequence ::=
- [state_name {: subprogram_call}]
«. state_name ::= ,
; idantifier | operation_sequenca
3
:;\ ' If the state_name in an operation sequence is of type M'TYPE then the following subprogram calls
P must be to visible subprograms of M and the resulting sequence has type M'TYPE. The unqualified
32 names of subprograms may be used in operation sequences since no ambiguity can result.
)
AN
\: Suppose P and Q are visible subprograms of M, and S is an operation sequence of type M'TYPE. The
'{Q}\ state of M immediately succeeding S after compieting a call, P(...), is denoted by
NN
- [S;P(.))
-":ij The notation for operation sequences is defined by:
_':;t {S;P;Q] = ([S:P): Q)
S Examples of operation sequences:
o [KEY_MANAGER: GET_KEY(A); GET_KEY(B)]
\ ', -~ the state of KEY MANAGER after two calls to GET KEY.
o~
) [STACK; PUSH (E)]
AN [STACK: PUSH (X); POP (Y)]
% .
A Notes:

1. Techniques for specifying module constructs by means of sequences of operations have

Mol been previously suggested by Parnas and Bartussek [PB 77], Dahl [Da 78], and Luckham
oy and Polak [LP 80).
el
‘a-: 2. An operation sequence denotes a state only under the assumption that ail subprogram
) sﬁ: calls in it terminate and. do not propagate exceptions; otherwise it is meaningless (section
2. 4.13). :
X
;'n‘?
AL,
e
o

o 8t e® e +* au e S anw” A e W ma W ¥ "

LS,
»

MR LR NS SR LS NUCYLLES TR S SRS e N SR Y LTI I -
N ~} \ > \-. ‘A '-q‘ P f\f..f;f: *ﬁ-‘?‘ 1- }:a\:“.:!}-:f\qa-‘j

.t pte
» P

[/ .’.-...J' .\. ‘

ot NS P LE7 ¢ AR

.........

We Ta gt il e n G R AL AR ALyl R R = AR A M g gt) g0 aef g ot R 1L LR, . AR Sl
Package Annotations

7.7.5 STATE RELATIVE RESULT VALUES
state_relative_result_value ::= state_name . primary

In package annotations it is necessary to denote the values of functions and procedure parameters
resulting when package operations are applied in certain states. These values are said to be
computed re/ative to the state of the package. They are denoted by selection on states. The resuit of
applying a package function, f, in state, St, is denoted by St.f. Similarly the selection notation for the
final values of procedure out parameters may be applied to a state using the 'OUT attribute of that
procedure (see Section 4.1.3).

Examples of state oriented result values:

[St;PUSH(X)].POP'OUT(E=>Y).E = X

-= the final value of the actual out parameter Y of a call to POP
-= in state [St;PUSH (X)]is X; E isthe formal out parameter
== in the specitication of POP.

NULL_KEY < [KEY_MANAGER].GET_KEY'OUT(k=>A).K
NULL KEY is < the out value of A resulting from a
call to GET _KEY in the current state of the

KEY MANAGER package.

Notes:

The selection notation, POP'OUT(E =>Y).E , denotes the final value of the actual out parameter, Y
say, bound to the formal E resuiting from the procedure call,. POP(Y). Use of the named parameter
notation with 'OUT functions is recommended for clarity (see section 4.1.3).

7.8 EXAMPLES OF PACKAGES WITH ANNOTATIONS

1. Example of a STACK package.

generic

type ELEM is private;

SIZE:NATURAL;

--| SIZE > 0O: -=constraint on generic parameter SIZE.
package STACK is

OVERFLOW,UNDERFLOW: exception:

: function LENGTH return INTEGER range 0..SIZE;
-=: function "=" (S, T : STACK'TYPE) return BONLEAN;
this specitication indicates that " = " will be

redefined in the package body.

procedure PUSH(E:in ELEM);
-=| raise OVERFLOW =)
-=| - STACK.LENGTH() = SIZE and
-=| [STACK;PUSH(E)] = STACK;

. B W et S ettty . P W
oy ERTAY n v LN TR AN iy T V)

"o

el W A
S o

A
EN

:
A
y’
o ¢

DL R P Y

b - v ¥
AC L S St i A S DRI R T W I DR R A R

.............

Package Annotations

procedure POP (£ : out ELEM);
--| raise UNDERFLOW =>
-=1 STACK.LENGTH({) = 0 and
-] [STACK:POP(E)] = STACK;

--| axiom forall St:STACK'TYPE; X,Y:ELEM =>

-=] [St:PUSH(X):;POP(Y)] =St and
-={ [St:;PUSH(X)].POP(E => Y).E = X and
-=| St'INITIAL.LENGTH() =0 and

-=] [St:PUSH(X)].LENGTH()

St.LENGTH() + 1 and
-=] [St:POP(X)].LENGTH()) - 13

St.LENGTH(

end STACK:

package body STACK is
type ELEM_ARRAY is array(1..SIZE) of ELEM;
SPACE : ELEM_ARRAY; ’
INDEX : INTEGER range 0..SIZE := 0;

-~ this declaration of the state type is not necessary but is included for
-= completeness; it is the default assumed in Anna, see section 7.7.3.

type STACK'TYPE is record
SPACE :
INDEX :
end record;

ELEM_ARRAY;
INTEGER range 1 .. SIZE;

-=~] whereforall S : STACK'TYPE => 0 <= S.index <= size;
-= this constraint on STACK'TYPE is equivalent to a monitor invariant
== in Hoare's sense [Hoare75].

--: function LENGTH return INTEGER range 0..SIZE;
--| return STACK.INDEX:;

-- redefinition of function " = " on STACK'TYPE.
-=-: function "s" (S, T : STACK'TYPE) return BOOLEAN;
--| return S.INDEX = T.INDEX and

== (forall K:INTEGER range 1 .. S.INDEX =>
-~} S.SPACE(K) = T.SPACE(K)):
procedure PUSH(E:in ELEM)
-=| whereout INDEX = in INDEX + 1 and
== out SPACE = ELEM_ARRAY'UPDATE
== (in SPACE, out INDEX => E);
is
begin

if INDEX = SIZE then
raise OVERFLOW:
else
t INDEX := INDEX +1:
SPACE(INDEX) := E;
ondif;

ot ~q-~ « a1

-y - . A G S o o
" '.‘... \'-\.. \\\ '\J"-\-"-’

&

- ~
- Seteta,

23

NN AR

-

AN A A N A I G K Al A S B e i e O S gt SR gt

~BLR LS L WL i bt Tl B P R oA S At C R

;;3:;; SRR
'-"\
ade a4 : Package Annotations
e
159
3 A‘; end PUSH;
ASL}
ro e procedure POP(E:out ELEM)
s --| where out INDEX = in INDEX - 1 and
\ ==} out SPACE = in SPACE and
S --| out E = out SPACE (in INDEX);
-2 is
o begin
e it INDEX = 0 then
N raise UNDERFLOW;
else :
T E := SPACE(INDEX);
;i INDEX := INDEX - 1;
32 end if; -
14! end POP;
) end STACK;
et
8
i
% |
2. Example of a symbol table package
Y 4
{:‘.} generic
_'-"..h.j . type TOKEN is private;
L N: INTEGER;
.t package SYMTAB is
.,\" OVERFLOW, UNDEFINED :exception;
e ,
-.f_: -=: function SIZE return INTEGER range 0 .. N;
o -=: function "=" (SS, TT : SYMTAB'TYPE) return BOOLEAN;
function DEFINED (S: STRING) return BOOLEAN:
5.'« procedure INSERT(S: STRING; I: TOKEN);
) -=| raise OVERFLOW => SYMTAB.SIZE = N;
S function LOOKUP(S: STRING) return TOKEN;
' --| raise UNDEFINED => SYMTAB = SYMTAB'INITIAL;
’.
:;: procedure ENTERBLOCK:
~ procedure LEAVEBLOCK:
J~ =
oy --] axiom
Ko --| forall SS : SYMTAB'TYPE; S,T : STRING; I : TOKEN =>
2 --| [SYMTAB'INITIAL; LEAVEBLOCK] = SYMTAB'INITIAL and
~3:: -=| SYMTAB'INITIAL.DEFINED(S) = FALSE and
. -=] [SS:ENTERBLOCK;LEAVEBLOCK]=SS and
»
W ==|] [SS:ENTERBLOCK].DEFINED(S) = FALSE and
N ==] [SS: ENTERBLOCK].LOOKUP(S) = SS.LOOKUP(S) and
3 ==| [SS:INSERT(S,I);LEAVEBLOCK]=[SS:LEAVEBLOCK] and
P ==| [SS;INSERT(S,I)].DEFINED(T) = it S = T then TRUE
Ra,*
4

Al S

—‘»Rﬁ-

'S ——

PSR S Y '.'\".‘ Nt \ o T)

A

Package Annotations

-1 else SS.DEFINED(T) and
-=| [SS;INSERT(S.I)].LOOKUP(T) = if S = T then I else SS.LOOKUP(T);

end SYMTAB;

package body SYMTAB is

type ELEM is record
LEVEL : INTEGER;
MEMBER : STRING;
TOK : TOKEN;
end record,;

type STORE is array (1 .. N) of ELEM;
subtype INDEX_RANGE is INTEGER range 0 .. N;

TABLE : STORE:
LEXLEVEL : INTEGER := 0;
INDEX : INDEX_RANGE := 0

-=- this declaration of the state type is not necessary but is included for
-- completeness; it is the defauit assumed in Anna, see section 7.7.3.
--: type SYMTAB'TYPE is record

.-t TABLE : STORE;

--: LEXLEVEL : INTEGER;

.=t ‘ INDEX : INDEX_RANGE;
-—: b(end record];

--: function SIZE return INTEGER range 0 .. N;
-=| return SYMTAB.POS;

--: function "=" (SS, TT : SYMTAB'TYPE) return BOOLEAN;
-=|] return SS.POS = TT.POS and
-=| forall I : INTEGER range 1 ..SS.POS => SS.TB(I) = TT.TB(I);

function DEFINED (S: STRING) return BOOLEAN is
-=| return exist I : INDEX_RANGE range 1 .. INDEX =>
== TABLE (I).MEMBER = S and TABLE (I).LEVEL = LEXLEVEL;
I : INDEX_RANGE;
J : ELEM;
begin
if INDEX = 0 oreise LEXLEVEL > TABLE (INDEX).LEVEL then
return FALSE;
else
I := INDEX:
loop
J := TABLE (I);
exit when J.LEVEL < LEXLEVEL;
if J.MEMBER = S then return TRUE; endif;
1 :=1-1;
end loop;
return FALSE:

; irehalt el .,:...- RS CRAN] \ﬂ.\'.\‘.'\'v'\f N ,‘-.\r
Y Y 3 2 ., »

.....

Package Annotations

endif;
end DEFINED:;

procedure INSERT(S: STRING: I: TOKEN) is
==| raise OVERFLOW => SYMTAB.SIZE = N;
begin
it INDEX = N then
raise OVERFLOW;
else
INDEX := INDEX + 1:
TABLE (INDEX) := ELEM'(LEXLEVEL, S, I):
endif;
end INSERT: .

function LOOKUP(S: STRING) return TOKEN is
-=| raise UNDEFINED => SYMTAB = SYMTAB'INITIAL;
-=| return J : TOKEN that exist I : INDEX_RANGE

-=] range 1 .. INDEX =>
| TABLE (I) .MEMBER = S and TABLE (I).TOK = J;
I : INDEX_RANGE:
begin
I := INDEX;
it I = 0 then raise UNDEFINED; endif;
loop
exitwhen I = 0; .
it TABLE (I).MEMBER = S then
return TABLE (1).TOK;
else :
I := I-1;
end if;
end loop;

raise UNDEFINED;
end LOOKUP;

procedure ENTERBLOCK is

--| out LEXLEVEL = in LEXLEVEL + 1;
begin

LEXLEVEL := LEXLEVEL + 1;
end ENTERBLOCK:

procedure LEAVEBLOCK is
-=| out (LEXLEVEL = in LEXLEVEL - 1 and
== INDEX = that I (in TABLE (I).LEVEL = in
-=| LEXLEVEL - 1 and
-= in TABLE (I+1).LEVEL = in LEXLEVEL)):

loop .
exit when TABLE (INDEX).LEVEL < LEXLEVEL:
INDEX := INDEX - 1;
end loop: :
LEXLEVEL := LEXLEVEL - 1;
end LEAVEBLOCK:

end SYMTAB;

) ':;\Z.y_,wb..?.blﬂ

N ‘ VISIBILITY RULES IN ANNOTATIONS 47

~ f

#Q

ﬁ:: 8. VISIBILITY RULES IN ANNOTATIONS

N . A

H
7
P 8.1 No addition.

.\J

“*
3
;_;;1 8.2 SCOPE OF A DECLARATIVE ANNOTATION

"1 .

- e The scope of a declarative annotation is the smallest enclosing scope of the declaration
AN of any name in the declarative annotation, at most the scope of a declaration at the
} beginning of the respective declarative part.
3 e The scope of a declaration in the domain of a quantified expression extends from the
. declaration to the end of the expression.

N)
. : ¢ The scope of a virtual declaration, i.e., a declaration made within a virtual text sign, --:, is
E the same as if the virtual text sign is removed and the declaration is considered to be in
' ‘__j the Ada text at the same point.

8.3 VISIBILITY

ot

o The identifier of a formal out or in out parameter of a procedure is also visible as a
selected component in expressions in annotations containing a "OUT function attribute.

LA

o An identifier declared in the domain of a quantified expression is directly visible in the

iy expression subsequent to =),
' : e A virtual declaration, i.e., a declaration made within a virtual text sign, --;, is visible only in
other formal comments (virtual text and annotations) within its scope.
"4
)
v ¢
o
n%
]

-L'; '."\1 -

]

s

e R R O P P L LS P PO T WS P I N « .) et g % e W e e e e, e,
T W ! 0 XN \ ‘\ IO ‘ .h .\ '\ S \ N NN N ." y ‘ .'..’..}:L...._.'..'..'._!.’-.‘.f;'k.'_ﬂm‘&ﬁ.\ﬁ..'lhﬂ

PR AR st Bt St W S A PC AT A A MBI AL R S RN S Sl (P R S G g o i~ o/ M- e A e g

..........

48 TASK ANNOTATIONS
. ’

9. TASK ANNOTATIONS

Omission: A theory of annotations of tasks and multitask systems has yet to be developed.
Extensions of Anna to tasks are planned. This will almost certainly invoilve introducing new
predefined attributes associated with tasks and extending the language of expressions in annotations
with modal operators.

L 4 LGOI S, UL I I) MEATSRGS TIPS
S04, M A TN NI S W AT A MIATOS AR

-
hd y

S e,
; _._.ﬂ‘

™y AT} -
AN ﬂ,\-lw &

TASK ANNOTATIONS 49

10. PROGRAM STRUCTURE

context ::=
-[context_annotation]
{with_clause [use_clause] [context_annotation]}

context_annotation ::=
limited [to {name_list; [declarative_annotation;]}]

A context annotation restricts the visibility of variables further than the Ada context for the purposes
of verification. If it is omitted, the usual Ada rules of visibility apply. Otherwise all variables required in
the annotated unit must appear in a context annotation; it has the same meaning as if the global
variables were (additional) formal parameters.

For any access type T, T'Collection denotes the associated collection variable and is thus required for
any change of the collection, that is allocation for the access type. Functions are pure if their
required list is empty, and side-effect free, if constancy is specified for all visible variables.

Examples of context annotations:

-=] limited
package body STACK is
type ELEM_ARRAY is ARRAY(1..SIZE) of ELEM;
SPACE:ELEM_ARRAY; :
INDEX : INTEGER_range 0..SIZE := 0;

procedure PUSH(E:in ELEM) is separate;
--| whereout INDEX = in INDEX + 1 and)
~==| out SPACE = ELEM_ARRAY'UPDATE (in SPACE, out INDEX, E):

LRI

end STACK;

--| limited to SPACE, INDEX;
separate (STACK)
procedure PUSH(E:in ELEM) is,

¢ o0

end PUSH;

..f A -‘..v‘ S .'_' v -‘..-'.-c";-',"' .Q..!..;n'.;(’;d o . _;-'.:-_’.:f.".'..(‘.:‘

e T s e e .-,'.-J
LRI I T U5 v SO

(50 : EXCEPTION ANNOTATIONS

S

‘.;'.;'.; 11. EXCEPTION ANNOTATIONS |
as \
"" Exception annotations are either annotations of an exception handler, or else propagation

: annotations in a subprogram declaration. Their purpose is to specify conditions under which a

24'3 handler expects an exception, and conditions under which a subprogram expects to propagate an

Y) exception. If the annotations are sufficiently complete, they will enable proofs of consistency

between programs and annotations to be obtained in the presence of exceptional behaviour (see
o’ [Luckham and Polak 80a]).

:'__.

7.7

:‘.-‘.i 11.2 ANNOTATION OF EXCEPTION HANDLERS

A . .
;fj Exception handlers may be annotated exactly as any other sequence of statements. Most important,
. an annotation at the beginning of the sequence of statements of an exception handler must be true
N before the handler is executed. (Such an annotation therefore constrains the situation in which the
*’:‘\'; exceptions that are to be handled by that handler may be raised.

t‘, ; Note: An annotation at the beginning of a sequence of statements (of a compound statement,

a subprogram body, etc.) is an annotation of a null statement and constrains the entry state.

S 4

:ﬁ Example of a handler annotation

o)

N begin

s --sequence of statements
N exception :
e when SINGULAR | NUMERIC_ERROR =>

‘a -=| DET(A) = 0; -- entry condition for handler

e PUT ("A IS SINGULAR");
N, when others =>

e PUT("FATAL ERROR");
= raise ERROR;

e end;

v'l")
oo |
o2 i
2 11.3 PROPAGATION ANNOTATIONS
i propagation_annotation ::=

gl raise exception_choice {| exception_choice}
:g [=> boolean_expression]
WA)

'-_}"j A propagation annotation for a subprogram specifies the exceptions that may be raised as the resuit
£ of a call to that subprogram, and the condition under which they are raised. A subprogram call is
bt equivalent to a raise statement for one of the exceptions whenever an exception is propagated as the

result of the call. The boolean expression subsequent to => must then hold.

T

Examples of propagation annotation:

o5

procedure PUSH (E: in ELEM);
--| raise OVERFLOW => STACK'.LENGTH() = SIZE;

|

)
Fol

4

)

54

S RS
L e

S

-

1R 2, R S a3 T T ey S s.'».‘.'.'.'.*. o .\.. w ' e N O N OO N \;,\. RIS R DTS R R N AR

A

"y

R

D o S o AN A N RN N T S N S T RA A SRS ottt <o

Exception Annotations 51

procedure BINARY_SEARCH (A : in ARRAY_OF_INTEGER;
KEY : in INTEGER;
POSITION : out INTEGER)
-={ A(out POSITION) = KEY;
-=| raise NOT_FOUND =>
-=1 ORDERED (A) -> torall I inrange A'RANGE =>
it | not KEY = A(I);

‘,;o AN IS .~
LRENE

Y

-
]

L

——

<

l‘ : D""

a"f";;'.: :

"

-
o

3

e
Pd

-,
&

'l"/‘l‘

.
LY i NI IVE

v, 0, LA et
s
LI

w18

»
4

RPN

:F ..' .."1’ o

‘. 4

03 ‘. .l
AR

)‘-f;r P

0) S

W

52 ANNOTATION OF GENERIC UNITS

12. ANNOTATION OF GENERIC UNITS

A generic declaration includes a generic part and declares a generic subprogram or a generic
package. The generic part may include the definition of generic parameters.

Annotations appearing in generic units may contain the generic parameters of the unit. Such
annotations are templates that may be instantiated according to the Ada rules for matching actual
and formal generic parameters. instances of a generic unit are then annotated by the same instances
of the annotation of the generic parent unit.

12.1.1 ANNOTATION OF GENERIC PARAMETERS

Generic formal parameters may be annotated analogously to formal parameter annotations (Sec.
"6.2").

.'ﬂﬂ(;1}3
AL

ik
P s

»
fad L S N

PR A I I A A Ny Gy,
'J.Jhﬁﬁ;" k)

Wy
&
Fa¥ns

I
.»*‘Kx d

PREDEFINED ATTRIBUTES S3

PREDEFINED ANNA ATTRIBUTES

Attribute of any access type:

COLLECTION T'COLLECTION is a package denoting the collection of all allocated objects.

NULL T'NULL corresponds to S'(null).

ALLOCATE T'ALLOCATE(X : in out T)-is a procedure attribute corresponding to new S; the
out vaiue of X is the newly allocated value. Values for constraints are added if
necessary.

ELEMENT TELEMENT (X .: T) is a Boolean valued function attribute, returning TRUE if X has

been allocated a value in TCOLLECTION.

Attribute of any procedure:

ouT P'OUT is a function returning a record containing the final values of the out
parameters of P after a call. The formal parameter names of P are the component
names of this record.

Attributes of any package:

AXIOM X'AXIOM binds an annotation to the visible part of package X. This axiom is then
guaranteed to be true of all elements in the visible part.

‘,' - ‘ S > *'»s B " L4 '. \' - n' ' . .:‘ * e R TN \:f.;‘.;. \:.\-‘ '.-t‘\v‘\b'.‘ L)

54) REFERENCES
‘ .

P,
! 3 REFERENCES
~
N
-y ' [Bauer et al. 78] Bauer, F.L., Broy, M., Gnatz, R., Hesse, W. and Krieg- Bruckner, B., A Wide Spectrum
- Language for Program Development. In: Robinet, B. (ed.), Program Transformations: 3rd Int. Symp.
) on Programming, Paris (1978), 1-15,
47 .
\I
:ﬁ [Broy and Krieg-Bruckner 80] Broy, M. and Krieg-Bruckner, B., Derivation of Invariant Assertions
! During Program Development by Transformation, ACM TOPLAS (to appear 1980).
3_: [FORM 81] Formal Definition of the Ada Programming Language, IRIA, V. Donzeau-Gouge, G. Kahn,
- B. Lang. (Nov. 1980).
4 .
.}4 [Hoare 69] Hoare, C.A.R., An Axiomatic Basis for Computer brogramming. CACM 12, (Oct. 1969),
i 576-580.
"’,‘ [Hoare 75] Hoare, C.A.R., Monitors: An Operating System Structuring Concept. CACM 18. No.2,
2 (1978).
L [Hoare and Wirth] Hoare, C.A.R, and Wirth, 'N.. An Axiomatic Definition of the Programming Language
a Pascal, Acta Informatica 2 (1973), 335-355.
Pt
-;."'ﬁ [Ichbiah et al. 79a] Ichbiah, J.D., Krieg-Bruckner, B., Wichmann, B.A., Ledgard, H.F., Heliard, J-C.,
A] Abrial, J-R., Barnes, G.P., and Roubine, O., Preliminary Reference Manual for the Ada Programming
TR Language, ACM SIGPLAN Notices (June 1979), Part A.
"‘,a ' [Ichbiah et al. 79b] Ichbiah, J.D., Krieg-Bruckner, B., Wichmann, B.A., Ledgard, H.F., Heliard, J-C.,
At Arbrial, J-R., Barnes, GP., and Roubine, O., Preliminary Rationale for the Design of the Ada

Programming Language, ACM SIGPLAN Notices (June 1979), Part B.

fLuckham and Polak 80a] Luckham, D., and Polak, W., Ada Exception Handling - An Axiomatic

‘f: Approach, ACM TOPLAS, (May, 1980).

\ {Luckham and Polak 80b] Luckham, D., and Polak, W., A Practical Method of Documenting and
j Verifying Ada Programs with Packages, Proc. Ada Conference, (Dec. 1980).

N [Luckham and Suzuki 79] Luckham, D.C., and Suzuki, N., Verification of Array, Record and Pointer
g:i Operations in Pascal, ACM TOPLAS 1, 2 (October 1979), 226-244.

G

= [SVG 79] Luckham, D.C., German, S.M., v Henke, F.W., Karp, R.A., Milne, P.W., Oppen, D.C., Polak,
W., Scherlis, W.L., Stanford Pascal Verifier User Manual, Stanford University, Stanford Verification
= Group, Report No. 11, 1879.

AN

Koy

NY 4

3
Y

O T P R T U TS LTS
.' .(oSt '_'-':'ht'.-:‘!‘:'(‘",‘:.!‘.'j'! "\A‘PZ".J";\A_:..!\“:I 'A"L:')}I}-ﬂ? -‘}J})’h

N RATIOAL PARTTAL YR R (AU 9 A e Phy MCAIAAO IOt R SO e g TV YLD TEITIET T

MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and
delected acquisition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineening support within areas 0f technical competence
48 provided to ESD Program Offieces (P0s) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
L{onosphenic propagation, solid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility

IR LI Uy

. W e e e e, ‘.'-'.
VP At %6 S LR S R TSI

T P ey

Dl ot

